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In the present paper, a new framework for calculating subjective risk estimation (SRE)

of an attentive human driver is proposed. First, we conduct a psychological interview of an expert driver to

obtain his cognitive structure of SRE. These results suggest that SRE can be expressed as a collision

probability between the ego-vehicle and other road users, and the probability can be estimated based on

subjective behavior prediction (SBP) for the road users, which is the future position of each user expressed

as a probability distribution (position distribution). The future position distribution is influenced by two

types of subjective factors on a traffic scene: environmental factors and target factors. These factors can

prompt and regulate SBP for each road user. Second, the cognitive structure of SRE is mathematically

redescribed to propose the framework for SRE. Third, we propose an algorithm by which to calculate SRE,

which is a collision probability, using a particle filter technique. Finally, numerical simulations for several

traffic situations, in which the ego-vehicle passes a pedestrian, are conducted. The results of these simulations

reveal the validity of the proposed framework.
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1. Introduction

Recently, preventive safety systems such as Forward

Collision Warning (FCW)
(1)

and Autonomous

Emergency Braking (AEB)
(2)

have been made

commercially available. Their effectiveness in accident

reduction has been verified by several studies.
(3,4)

However, current systems cannot always avoid

collisions because they are designed to perform their

functions only when a collision with a target object,

e.g., a leading vehicle or a pedestrian, in the planned

path is unavoidable. 

In order to improve current systems, one promising

method is to take into account the safe driving

behaviors of an attentive human driver. The driver can

avoid hazardous situations by reducing speed or

preparing to brake in case of a sudden change in the

traffic situation, whether or not this change actually

occurs. In order to drive in such a safe manner, it is

essential to predict changes in future traffic and to

estimate the collision risks. Even if potentially

hazardous road users are not in the driver’s planned

path, the driver predicts their future behaviors and

interactions and estimates the risk of collision with

each of these users so that the driver can control the

vehicle speed appropriately and maintain safe

distances from these users. Technically realizing

behavior prediction and risk estimation of the driver

could lead to improved current systems.

It is important to note that behavior prediction and

risk estimation of the driver are subjective. Moreover,

subjective behavior prediction (SBP) and subjective

risk estimation (SRE) could be affected by various

factors related to traffic. For example, the presence of

a road marking affects the speed at which drivers

approach a pedestrian at a crosswalk.
(5)

Another

study
(6)

has shown that drivers identify a pedestrian’s

intention to cross a road from the pedestrian’s posture.

These results imply that the driver could use some

features of the road environment and the pedestrian’s

state to predict the pedestrian’s behavior and to

estimate the risk. In the present paper, the focus is on

proposing a new computational framework for SBP

and SRE.

In recent years, behavior prediction frameworks for

road users have been investigated in terms of road
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safety using various approaches. Pattern learning

approaches
(7,8)

apply machine learning techniques to

predict future trajectories of traffic users at a fixed

location. These approaches are based on real world

traffic data and are quite objective. The knowledge-

based approach
(9,10)

attempts to structuralize hazardous

situations. Although this approach could potentially

use any types of features in a traffic scene to assess

risk,
(11)

the overall capability of this approach is limited

to describing the temporal and spatial relationships

between multiple road users. In contrast, the Bayesian

approach
(12-14)

has the advantage of capturing complex

interactions between multiple road users in future

traffic situations. However, in previous studies based

on this approach, only physical constraints are

considered to predict the possible future behavior of

each road user. The physical constraints are not

sufficient parameters for SBP.

In the present paper, a framework for calculating

SRE is proposed. SRE is expressed as a collision

probability obtained on the basis of SBP, which is the

future position of each road user expressed as a

probability distribution (position distribution). The

position distribution is obtained using the particle filter

technique.
(15)

In order to incorporate the subjective

effects in the particle filtering, two specific parameters,

both of which are determined in a subjective manner,

are introduced as random noise in the update step and

the resampling weight in the resampling step. The

remainder of the present paper is organized as follows.

Section 2 structuralizes SRE through a psychological

interview of an expert driver to clarify the cognitive

relationship between SRE and SBP. The relationship

is then described mathematically in order to propose

the framework for SRE. Section 3 describes the

algorithms used to calculate SBP and SRE for

numerical experiments conducted in Section 4. Finally,

we present the conclusions in Section 5.

2. Framework for SRE

2. 1  Schematic Framework for SRE

We conducted a psychological interview of a male

expert driver to obtain a comprehensive structure by

which to derive a framework for SRE. This driver is

regarded as an attentive driver because he works as a

safe driving instructor in our laboratory. The evaluation

grid method,
(16)

which is a modified repertory grid

technique,
(17)

was used as the interview method. In the

interview, using printed pictures of traffic scenes

selected from near-miss incident data, an interviewer

repeatedly asked the driver why traffic scenes are

hazardous and what are the hazards in the scenes. 

The results of the interview are the structure of the

driver’s risk perception. Figure 1 illustrates one part

of the structure. (The entire structure is too large to fit

on one page.) In the figure, the sentences inside the

solid boxes are the driver’s answers, and the texts

outside the boxes are our interpretations. These results

provide insight into the framework of SRE, as follows:

a) The expert driver subjectively estimates the

possibility of collision between the ego-vehicle and

another road user as SRE for a traffic scene.

b) The possibility of collision is estimated, i.e., SRE is

performed, based on SBP for both the ego-vehicle

and other road users. 

c) SBP has an uncertainty caused by two types of

factors, namely, target factors and environmental

factors:

Target factors are subjective factors concerning other

road users, which result in uncertainty in the behavior

prediction of the driver. These factors include posture,

age, and motions indicating inattentiveness.

Environment factors are subjective factors

concerning other unspecified road users that make up

the traffic environment, which result in uncertainty in

the behavior prediction of the driver. These factors

include the presence of crosswalks, the absence of

sidewalks, weather, and the number of other road

users.
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The possibility of 
collision is high.

Other road users 
might not notice my 

vehicle.

The situation allows 
other road users to 
disobey formal and 

informal rules. There is 
uncertainty in the 

behaviors of 
other road users.

There is 
uncertainty in the 
behavior of my 

vehicle.
I must perform 
several tasks in 

order to continue 
driving safely in the 

presence of other 
road users.

There is insufficient 
time to maintain safe 

driving in the 
current situation

SBP for the ego-
vehicle

SRE

Environment factor

Target factor

Environment factor

Target factor

SBP for other road 
users

Fig. 1 Part of the structure of the subjective risk

estimation.
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Figure 2 is a schematic diagram for the framework

of SRE. SRE can be expressed by a collision

probability between the ego-vehicle and other road

users, which is derived based on SBP for each road

users. SBP should be determined in a stochastic

manner rather than in a deterministic manner because

SBP must have an uncertainty caused by target factors

and environmental factors. In the present paper, SBP

is expressed as a probability distribution of the position

of each road user.

2. 2  Mathematical Framework for SRE

In this section, a mathematical framework for SRE

is described as a Bayesian representation. Let CT
denote a binary probability variable describing the

collision state of the ego-vehicle (driver’s vehicle) at

time T. If no collision occurs until time T, CT = 0;

otherwise, CT = 1. Taking the output of the outside-

monitoring sensor at time 0 (the current time) as S0 =

s0, the collision probability that the ego-vehicle

collides with at least one other road user by time T = tf
can be defined as follows:

· · · · · · · · · · · · · · · (1)

As shown in Eq. 1, the collision probability at T = tf
can be obtained by calculating the probability that no

collision occurs for each time T up until time T = tf,

which we refer to as the non-collision probability. The

non-collision probability in Eq. 1 marginalizes over
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several probability variables as follows:

· · · · · · · · · · · · · · · (2)

where XOBJ is a probability variable capturing the road

user state at time k, which consists of position, velocity,

and driver attributes, such as posture and age, and

XENV is a spatial representation of the current road

environment including sidewalks and crosswalks. The

probability variables ΘOBJ and ΘENV represent target

factors and environment factors, respectively, at time

k, each of which characterizes uncertainty in SBP. In

addition, Vk is a probability variable representing a

binary state of reasonability concerning the predicted

position of each road user at time k. The reasonability

is subjectively judged based on the relationships

between road users or between each road user and the

road environment. When the driver judges the position

of a road user at time k is reasonable, the element of

Vk corresponding to that road user is equal to 0, or

otherwise is equal to 1. In general, Vk is defined as a

multi-dimensional binary variable, the dimension of

which depends on the number of road users and road

segmentations.

p(Ck+1 = 0, Vk+1|XOBJ , XENV ; Ck = 0, Vk, ΘOBJ , ΘENV )

in Eq. 2 is a probability density function (PDF)

corresponding to SRE in Fig. 2 and gives the

probability that no collision occurs between the ego-

vehicle and other road users at time k + 1. Assuming

that the state transition of each road user follows a

Markov process, SPB in Fig. 2 is defined as p(XOBJ |

XOBJ , XENV ; Ck = 0, Vk, ΘOBJ ) in Eq. 2. The PDF

describes the state of each road user at time k + 1,

which is determined by the previous state and the

current spatial representation. Target factors and

environment factors in Fig. 2 are represented as
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(probability distribution 
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Target factors
(MVP)

Environmental factors
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Fig. 2 Schematic diagram for the framework of SRE.



p(ΘOBJ |XOBJ , XENV ; Ck = 0, Vk) and p(ΘENV |XOBJ ,

XOBJ ,XENV ; Ck = 0, Vk, ΘOBJ ) in Eq. 2, respectively.

The current states for each road user are defined as

p(XOBJ ,V0|XENV ;C0 = 0, S0 = s0) and the spatial

representation of the current road environment is

p(XENV |C0 = 0, S0, = s0) in Eq. 2.

3. Algorithm for SRE and SBP

In order to simulate SRE, it is very important to

select an appropriate algorithm using the subjective

factors in the proposed framework. To develop the

algorithm, we first simplify Eq. 2 to obtain Eq. 3,

assuming conditional independence. We then assign

each PDF some form of distribution function.

· · · · · · · · · · · · · · · (3)

Assuming that the ego-vehicle is on a horizontal

plane, the PDFs of XOBJ and XENV in Eq. 3 are given

as follows:

,

· · · · · · · · · · · · · · · (4)

,

· · · · · · · · · · · · · · · (5)

where in Eq. 4 is the normal distribution with

mean μ and variance Σ. Thus, Eq. 4 represents a sum

of normal distributions, N(s0) is the number of road

users which includes the ego-vehicle, XOBJ is a
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probability variable of recognized state variables,

mean, μn,OBJ (s0) and variance, Σn,OBJ (s0) of a state of

each road user depends on sensor inputs s0. Then, the

state variables consist of attribute an, position xn, and

velocity vn: i.e., an = {ego-vehicle, pedestrian, other

vehicle}, xn = [xn, yn]
T

, and vn = [vn,x, vn,y]
T
. In Eq. 5,

which has a discrete uniform distribution based on

dividing the horizontal plane into M-dimensional grids,

the M-dimensional state variable XENV represents an

attribute in each grid of the horizontal plane, such as

XENV = [e1, e2, …, em, … , eM], and em = {curb,

roadway, sidewalk, crosswalk}, and δ(·) is the Dirac

delta function.

Here, ΘOBJ are the target factors and ΘENV are the

environment factors, which indicate the magnitude of

the constraints on the movements of each road user.

Although various types of PDF can be used for

ΘOBJ and ΘENV , these variables are herein assumed to

follow a discrete uniform distribution because the

purpose of the present study is to confirm the

suitability of the algorithm for simulating SRE using

these variables. Under this assumption, PDFs take on

the same form as Eq. 5.

,  · · · · · · · · · · · (6)

.  · · · · · · · · · · · (7)

For convenience, we refer to θOBJ and θENV ,

respectively, as MVP and TPP, which are defined as

follows:

Momentum variance parameter (MVP): the

parameter relevant to the movement of a road user.

When MVP becomes larger, the uncertainty in the

movement of the road user becomes greater. Each road

user has its own MVP depending on the uncertainty in

its movement.

Transition possibility parameter (TPP): the

parameter relevant to the constraint on the movement

of a road user by the road environment. TPP regulates

the movement of a road user at a location so that low

TPP can inhibit the road user from moving, and high

TPP can prompt road user to move.

SBP predominantly follows p(XOBJ |XOBJ ; ΘOBJ ) in

Eq. 3, which means that the state of each road user

depends on the state at the previous time and the target
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factors (MVP). In the present study, XOBJ is assumed

to follow the mixtures of normal distributions

depending on each state of road users, Xn,OBJ and

corresponding target factors Θn,OBJ .

· · · · · · · · · · · · · · · (8)

Although the target factors (MVP) are the dominant

factors affecting SBP, TPP also affects SBP. Figure 3

is a conceptual illustration of SBP for a pedestrian

using MVP and TPP. Figure 3(a) shows a traffic scene

in which the ego-vehicle runs along the roadway and

a pedestrian walks on the sidewalk parallel to the

roadway. Figure 3(b) shows how SBP for the

pedestrian is performed. Each circle in Fig. 3(b)

indicates a probability distribution for the pedestrian’s

position at a given time. The pedestrian has MVP as

its dynamics specification. The position distribution at

a given future time can be obtained by iteratively

updating using MVP and TPP for each location on the

map. Over time, MVP spreads the position distribution

while a low TPP restricts its spread. In Fig. 3(b), TPP

is highest for the sidewalk area, the second highest for

the crosswalk area, the third highest for the road area,

and the lowest for the curb area. The distribution of the

future position does not spread into the road because

TPP is low for the curb and road areas, but does spread

in the sidewalk and crosswalk areas because of high

k+1

k

0
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=

Θ
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001
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sN

n
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kk
N

TPP in these areas.

However, for actual traffic scenes, it is difficult to

represent the PDFs of the predictive variables Ck,

VOBJ , VENV , and XOBJ in Eq. 3 as continuous

distribution functions because the variables suffer from

nonlinear effects due to ΘOBJ and ΘENV . In the present

study, instead of using continuous distribution

functions, we use the densities of numerous particles

to form a flexible distribution.

The algorithm for SBP using a particle filter

technique is described as follows:

1. Set the subjective parameters.

2. Allocate particles as current states on the horizontal

plane according to Eq. 4.

3. Move particles according to random sampling using

Eq. 8.

4. Remove particles with a probability proportionate

to TPP at their positions (Fig. 4). Adding the number

of removed particles and calculating an average,

p(VENV ) can be approximated.

5. Remove particles if another object exists at the same

location (Fig. 5). Adding the number of removed

particles and calculating an average, p(VOBJ ) can

be approximated.

6. Copy particles at a location with a probability that

is inversely proportional to TPP.

7. Summarizing VOBJ , which describes the collision

of particles with the ego-vehicle, p(Ck+1 = 0) can be

approximated.

Iterating steps 3 through 7 until k = T, the distribution

of future positions can be generated. Although the

removal processes shown in Figs. 4 and 5 are

illustrated as separate, these processes can be

performed in parallel, as described above. This

algorithm guarantees that the total number of particles

is constant over time by copying the same number of

particles in step 6, as are removed in steps 4 and 5. Due

to this copying process, the computational cost is

constant when the total number of particles remains

constant, independent of the number of objects. The

collision probability can be calculated by dividing the

number of particles that are not removed by the

number of particles that are removed.

4. Numerical Experiments

4. 1  Experimental Method

Figure 6(a) shows an example traffic scene used in

the experiment. Figure 6(b) illustrates an expected

k+1k+1k+1

00

k+1

k+1

k+1
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Crosswalk

Roadway

Sidewalk

Curb

Ego-vehicle

Pedestrian

Initial position
distribution

MVP

Predicted position distribution

TPP
LowHigh

Fig. 3 Example of SBP. (a) Traffic scene, and (b) SBP,

which is predominantly affected by MVP.

Subjective behavior prediction is also regulated by

the TPP.

(a) Road environment (b) Subjective behavior
prediction (SBP)



result for the collision probability, which shows the

probability increasing monotonously over time.

Here, the horizontal plane, which is the region of

interest, is 85.0 [m] long (X-direction) and 20.0 [m]

wide (Y-direction). The origin of the plane is set at the

center of the ego-vehicle’s position in the experiment.

Dividing the region into small squares with side

lengths of 0.25 [m] (27,200 squares in total). Then, the

PDF of XENV is described as follows:

· · · · · · · · · · · · · · · (9)

0

p X C S s T t X s

s e e

ENV f ENV ENV

ENV

0 0 0

0

0 0 0 0

0 1 2

0= = =( ) ≅ − ( )( )
( ) =

, ,

, ,

δ μ

μ ,e T
27200[ ]

In this experiment, it is assumed that Σn,OBJ → 0 in

Eq. 4. Thus, the PDF of XOBJ is described as follows:

· · · · · · · · · · · · · · (10)

The parameter lEGO-PED is the depth distance between

the ego-vehicle and the pedestrian.

0

0
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(2) Add random noise with the 
variance of MVP to particle 
positions.

(3) Remove particles that collide 
with the particles of other road 
users.

(4) Copy surviving particles in 
proportion to the TPP of their 
locations.

(1) Allocate particles around the 
position of the road user at  
the initial time (k = 0).

(5) Adopt the surviving particles 
as the predicted distribution 
for the next time step (k = 1).

copied

removed

Road user A Road user B

Fig. 5 Prediction procedure between different road users.

TPP: Low

copied

(2) All particles are moved with 
random noise under MVP.

(3) The particles are removed in 
proportion to the probability 
defined by TPP at the particle 
positions.

(4) The surviving particles are  
copied in proportion to  
the probabilitydefined by TPP 
at  the particle positions.

TPP: High

(1) Allocate particles around the 
position of the road user at the 
initial time (k = 0).

(5) Adopt the surviving particles
as  the predicted distribution in
the next time step (k = 1).

TPP: Low

TPP: High

TPP: Low

TPP: High

TPP: Low

TPP: High

TPP: Low

TPP: High

removed

Fig. 4 Prediction procedure on a horizontal plane modified by the TPP.

.
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A prediction model is implemented as follows:

· · · · · · · · · · · · · · (11)

Here, Δt is the time between k and k + 1. In this

experiment, it is assumed that the ego-vehicle

maintains uniform motion while the pedestrian walks

randomly. In addition, σ2
controls the subjective

uncertainty of the pedestrian’s movement as the

expected variance from the ego-vehicle point of view.

The PDF of the subjective variable ΘENV is defined

as follows:
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The likelihood αX-Y is the subjective validity of the

proposition “An object X can move to place Y.”

4. 2  Results

4. 2. 1  Effect of Target Factors on SBP

As described in Section 3, the target factors that the

driver subjectively perceives in a traffic situation are

represented by MVP in the proposed algorithm. For

example, when the driver sees a pedestrian looking

around, the driver predicts the behavior of the

pedestrian with large uncertainty. Thus, the effect of

MVP on collision probability, which is calculated

using behavior prediction, is confirmed in this

experiment. 

Figure 7 shows the mean collision probabilities at

T = 4.0 [s] over 100 trials as a function of lEGO-PED and

σ2
for αPED-ROADWAY = αPED-SIDEWALK = 1.0.

When σ2
= 0.0

2
[m

2
/s

2
] (a pedestrian is not aware

of the ego-vehicle), the collision probabilities are

almost the same as the analytic results calculated by

the geometric relation between the ego-vehicle and the

pedestrian. In contrast, when σ2
> 0.0

2
[m

2
/s

2
] (a

driver perceives uncertainty in the pedestrian’s

locomotion), the results in Fig. 7 become broader.

4. 2. 2  Effect of Environment Factors on SBP

As described in Section 3, environment factors that

the driver subjectively perceives in a traffic scene are

represented as TPP values in the proposed algorithm.

For example, barriers separating the sidewalk from the

roadway decrease the subjective uncertainty in the
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pedestrian’s behavior. In particular, the driver thinks

that the pedestrian is unlikely to cross the roadway (the

pedestrian can be expected to walk along the

sidewalk). In this experiment, it is confirmed that

adjusting TPP can result in a reasonable collision

probability.

Figure 8 shows the mean collision probabilities at T
= 4.0 [s] over 100 trials as a function of lEGO-PED and

for condition of σ2
= 0.1

2
[m

2
/s

2
] and αPED-CROSSWALK

= 1.0. As the TPP of the roadway, αPED-ROADWAY ,

becomes low, the collision probability becomes low,

which implies that the pedestrian is less likely to enter

the roadway in such a traffic environment.

4. 2. 3  Effect of the Presence of a Crosswalk on SBP

Let us consider a realistic traffic scene in which a

pedestrian is walking toward a crosswalk. In the

proposed algorithm, the crosswalk is regarded as an

environment factor, which means that TPP is high for

the crosswalk for both the ego-vehicle and pedestrians.

The geometric setting is shown in Fig. 9, which is the

same that in Fig. 6(a) except for the addition of a

crosswalk. Numerical experiments were conducted by

varying TPP in the area of the roadway for the

pedestrian.

Figure 10 shows the mean collision probabilities at

time T = 4.0 [s] over 100 trials as a function of lEGO-PED
and αPED-CROSSWALK for σ2

= 0.1
2

[m
2
/s

2
] and

αPED-ROADWAY = 0.0. When TPP is greater than or equal

to 0.50, the collision probabilities are almost the same

as those in Fig. 8. This result shows that the pedestrian

is likely to cross at areas other than the crosswalk. In

contrast, when TPP is equal to 0.0, the collision

probability has a peak near the crosswalk (depth

distance: 20.0 [m]). This means that a pedestrian who

is very close to the crosswalk is predicted to cross at

the crosswalk. If TPP is instead equal to 0.25, the

collision probability is slightly broader than in the case

that TPP is equal to 0.0. This means that the pedestrian

near the crosswalk is predicted to cross the road. Thus,

the algorithm can simulate the performance of SBP of

a human driver by adapting TPP.
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5. Conclusion

In the present paper, a framework for calculating

SBP and SRE for a traffic situation has been proposed.

Interviewing expert drivers to obtain the cognitive

structure of the risk estimation process, subjective

factors, which play an important role in SBP and SRE,

have been classified into target factors and

environment factors. These factors were modeled as

probability variables in a probability distribution of

collision probability following a Bayesian approach.

Based on the mathematical framework, the collision

probability can simulate the magnitude of subjective

risk by assuming appropriate PDFs for the probability

variables. Although various distribution types for these

variables are possible, a simple distribution, i.e., a

uniform distribution, was adopted in order to confirm

the suitability of the proposed algorithm. These

distributions were parameterized using only two

parameters, namely, MVP and TPP. A particle filter

was used to generate SBP in order to estimate the

collision probability. The results of numerical

experiments verify that the proposed algorithm can

estimate a suitable collision probability with only two

parameters in a simple distribution.

In the future, the proposed algorithm will be

examined for less orderly road environments.

Moreover, the selection of appropriate distributions for

the subjective factors for useful applications will be

considered.
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