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Abstract

Eddy viscosity modelling is still a "standard" approach for industrial CFD applications for turbulent flows
despite its serious deficiencies.  Thus, a number of research studies, including the author's, have been
recently made to improve models of this kind.  This article reviews these efforts and suggests a future
direction for tackling turbulent flows of industrial importance.
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(EVM), Reynolds Stress Model (RSM), Large Eddy
Simulation (LES) and Direct Numerical Simulation
(DNS).  Amongst these, only DNS closely simulates
the actual physics of turbulence, while industrially
interesting schemes are at present the simplest
EVM's because the others require far more
computer resources than are available for routine
work.

Although the eddy viscosity concept assumes a
crude relation between turbulent quantities, models
based on this concept such as the k-ε two-equation
model have made many successful predictions in
many flow fields with numerical stability.  The k-ε
EVM is thus the main scheme for routine work in
present industrial laboratories.  Nevertheless, over
the wide range of flow predictions made over the
last two decades, it is now recognized that
conventional EVM's have severe defects in many
complicated flow fields.  Consequently, research
studies aimed at extending the applicability of
EVM's have been highly demanded by industry.  In
fact, the continuous research efforts have been
significantly extending the performance of EVM's.
Therefore, this article particularly focuses on these
recent achievements.

The following section §2 surveys the main

1. Introduction

Turbulence is an irregular motion in fluid flows.
The various flow quantities thus show random
variation with time and space and only statistically
averaged values are distinctively discerned.  Since
exactly dealing with turbulence with mathematics
has been one of the most notoriously thorny
problems of classical physics, several well known
scientists, who had interests in turbulence, did not
dare to pursue its physics.  For example, W.
Heisenberg, the great Nobel Prize laureate, did his
doctoral research on turbulent flows but later
changed his major to quantum theory.  A. Einstein,
the greatest Nobel Prize physicist in this century,
knew the difficulty of turbulence and thus did not go
into its physics.  R. Feynman, another famous Nobel
Prize laureate, noted that turbulence was the most
important unsolved problem of classical physics.

However, the development of modern computer
technology drastically changed this situation and has
provided some opportunities even for industrial
engineers to challenge turbulent flows using
Computational Fluid Dynamics (CFD).  The major
CFD treatments of turbulence can be classified into
four types of approaches: Eddy Viscosity Model



historical establishments related to eddy viscosity
modelling, section §3 summarizes the recent efforts,
then finally, section §4 concludes and suggests a
future direction for the treatment of industrially
important turbulent flows.

2. Historical foundations

In this section, firstly, major establishments in
eddy viscosity modelling are surveyed, then a more
extended modelling concept that forms algebraic
Reynolds stress models (ASM's) is summarized
because it is mathematically very close to EVM's
and links some recent nonlinear eddy viscosity
approaches.

2. 1  Eddy viscosity models
The EVM's are based on an algebraic expression

which represents the Reynolds stresses appearing in
the ensemble averaged Navier-Stokes equations as
unknown properties.  The ensemble averaged forms
of the transport equations for mean velocity of
incompressible flows with constant properties can be
written as:

Continuity,

Momentum,

where ρ and ν are, respectively, the density and the
kinematic viscosity of the fluid of interest.
Following Boussinesq1), the Reynolds stresses are
represented by the eddy viscosity νt and the strain
tensor Sij as:

The strain tensor is defined as:

The k-ε EVM2) takes the eddy viscosity as:

where cµ is a constant value given by referring to
local equilibrium shear layers.  To obtain νt, the

transport equations for the turbulent kinetic energy
k and its dissipation rate ε are solved with
approximations.

where Dφ is the diffusive transport term of the
variable φwhich is normally modelled as:

The coefficients cε1 and cε2 were given by referring
to the measured rate of decay in grid turbulence and
the local equilibrium turbulence, respectively.  These
standard values3) are listed on Table 1.  This
standard version does not have any near-wall
dependence upon molecular viscosity, so that wall
functions4,5) are employed in place of the no-slip
wall boundary condition.

To take account of the viscous effects, Jones &
Launder2) (JL) first devised a low-Reynolds-number
(LRN) version of the k-ε EVM.  They implemented
the near-wall viscous effects by damping νt toward a
wall with introduction of a damping function, fµ, as:

This fµ function was designed to reduce its value
from unity  toward a wall.  They also modified the ε
equation with the introduction of the other damping
functions, f1 and f2, as:

where ε is the isotropic part of ε defined as
. The reason why they chose ε

rather than ε itself is that ε vanishes to exactly 0 at a
wall boundary.  This simple boundary condition
makes numerical solutions more stable.  The
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gradient production term, Pε3, was also modelled
using a gradient diffusion hypothesis as:

Many versions followed this original work. Some
researchers such as Wilcox6), for example, chose a
substitute quantity for ε.  This model solves a
modelled equation for ω ( ≡ ε / k ):

The coefficients such as cω1 and cω2 were tuned by
referring to the k-ε model equations since the ω
equation was derived by manipulating the k and ε
equations.

Patel et al.7) concluded, however, following
systematic comparisons between eight LRN models,
that an amended version of the JL model by Launder
& Sharma8) (LS) was one of the most successful for a
number of straight thin shear flows.  The LS model
uses the following damping functions of a turbulent
Reynolds number Rt ( ≡ k2 / ( νε ).

2. 2  Algebraic Reynolds Stress Models
The transport equation of the Reynolds stress uiuj is

where Π ij and εij are, respectively, the pressure
correlation and the dissipation rate terms of uiuj.
The terms that contain the gradient of uiuj are the
transport terms (i.e., the convection and the diffusion
terms).  In the ASM scheme, the transport of the
Reynolds stresses is approximated in terms of that of
turbulence energy k to reduce the differential
equations for uiuj to a set of algebraic ones. This
scheme was firstly introduced by Rodi9) as: 

where Tφ is namely the net transport (convection
minus diffusion) of φ.  Since Tk =Pk – ε, by adapting

Eq.(15), one may rewrite Eq.(14) as:

Pij + Πij – εij =       ( Pk – ε ) ···············(16)
Then, one just needs models for the terms Πij and εij.
There are many established models for Πij such as
Launder, Reece & Rodi model10), and each model
forms a different version of the ASM.  However, the
basic model11) may be

Πij = –c1εaij – c2 ( Pij –     δijPkk )
····································(17)

where the anisotropic stress tensor aij = uiuj / k –    δij

and the values of 1.8 and 0.6 are normally used for
the coefficients c1 and c2, respectively.  In high
Reynolds number isotropic flows, the following
treatment is normally applied.

εij =    εδij ···································(18)

Consequently, the algebraic expression for the
Reynolds stress is obtained as:

Since Pij and Pk consist of the Reynolds stresses
and the mean velocity gradients, this algebraic form
is implicit in terms of the Reynolds stress.

Therefore, ASM's need to solve the transport
equations of k and ε with successive matrix
inversions of the implicit algebraic equation set for
the Reynolds stresses.

3.  Toward a new standard

In this section, the recent novel attempts to
improve the EVM's are discussed especially
focusing on wall detecting parameters and nonlinear
constitutive relations used in the models.  However,
due to page limitations, unfortunately, many of their
model equations are not described, therefore, the
referenced papers should be consulted for more
details.

3. 1  Near-wall modelling
Since the near-wall variation in the local turbulent

Reynolds number Rt significantly changes
depending on the bulk Reynolds number Re as
shown in Fig. 1‡, finding another near-wall detector
which has general near-wall characteristics has been
the main concern of modelling near-wall turbulence.
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In their review, Patel et al.7) emphasized the
necessity to have a reasonable near-wall fµ
distribution because none of their cited models
agreed with the data deduced from several different
experiments (Fig. 2).  This triggered many
researchers to modify the LRN models, suggesting
ways of improving the EVM's.  Moreover, since the
emergence of the DNS12-14), a lot of attention has
been given to the near-wall asymptotic behaviour of
each turbulent quantity because the DNS provided
reliable data for every process including
unmeasurable correlations.

To obtain a reasonable near-wall distribution of
the fµ damping function, many recent versions of the
LRN k-ε EVM15-17) have implemented the effects of
the dimensionless wall distance (wall unit):

y+ ≡ uτ y/ν ···································(20)
where uτ and y are the friction velocity and the
distance from a wall, respectively.  However, one
can easily see that none of these LRN EVM's is
useful to apply for a flow with a recirculation.  In
particular, the use of uτ is not suitable for such a
flow case because it becomes zero at a reattaching
point.  In this case, the wall unit was sometimes
replaced with Abe et al.18), however,
replaced uτ with the Kolmogorov velocity scale,
(νε)1/4, and devised the parameter:

y* ≡ ( νε )1/4 y/ν ··································(21)
to damp the eddy viscosity in order to obtain
reasonable predictions of backward facing step
flows.  (They later extended the model to a nonlinear
k-ε model19))  The parameter y* was also used in
Kawamura & Kawashima's (KK) LRN k-ε EVM20).

Nevertheless, the use of the wall distance y limits
the model's applicability when considering flow in
more complex geometry.  The discussion by Lee et

al .21) using their DNS results suggested that
constructing a universal model depended on
identifying dimensionless parameters such as the
normalized strain invariant:

where τ is the characteristic time scale normally given
as the ratio of k and ε, k/ε.  In response, in order to
obtain the substitute parameter for the wall distance,
Yang & Shih22) (YS) devised the  parameter R which
consisted of the strain invariant as:

The use of this in the dumping function fµ led to
good predictive performance in wall shear flows
with zero or favorable pressure gradients.

Due to its general characteristics in shear flows as
shown in Fig. 3, the strain invariant has been
recently employed as a near-wall parameter in
several other proposals such as Cotton & Ismael23)
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and the nonlinear k-ε EVM of Craft, Launder &
Suga24,25). Cotton & Ismael later proposed a k-ε-S
model26) coupling with a transport equation for the
strain invariant:

The transport effects of S gave some reliability in
predicting buoyant flows.

Since the desirable variation in the strain invariant
as a near-wall parameter is relatively limited near
walls, Craft, Launder & Suga27-29) further introduced
the stress invariant A2 ( ≡ aijaij) as another near-wall
detector into their nonlinear k-ε EVM.  Stress
anisotropy is high near a wall and its measure is
represented by A2 as shown in Fig. 4, hence, A2 can
be a near-wall parameter.  The value of A2 was
obtained by solving its transport equation:

with proper models for Πij and εij.
Durbin33) introduced the Reynolds stress

component normal to a wall, υ2, as a damping
parameter for the eddy viscosity of the k-ε EVM as:

νt = cµυ
2τ ·································(26)

The values of υ 2 are obtained by solving its
modelled transport equation.  In fact, the near-wall
damping in the eddy viscosity comes from the
blocking effect on the fluctuating velocity
component normal to a wall-boundary by the
existence of the boundary. In this sense, the
boundary which gives the blocking effect is not

necessarily the wall-boundary.  To support this, Fig. 5
shows a similar damping profile of the eddy
viscosity near the free surface (y/δ) of an open
channel flow.  Hence, directly implementing this
effect by the use of υ2 in the damping model has a
physically correct reason.  However, the k-ε-υ2

model is only applicable in a flow parallel to a wall
because υ is not always normal to a wall in
complicated geometry.  Furthermore, the use of υ2

alone in a scalar variable ν t leads to severe
fundamental inconsistencies since υ2 is a component
of the Reynolds stress tensor and should not appear
in any scalar value.

Thus, it is necessary for a more general eddy
viscosity formula to have a physically and
mathematically correct damping parameter toward
wall or shear-free boundaries.  Accordingly, the
author noticed the flatness parameter of the
Reynolds stress tensor, A (≡ 1–    (aijaij - aijajkaki)), as
a damping parameter.  He thus extended his work on
the k-ε-A2 model27-29) to a k-ε-A model34) by
substituting the following A-transport equation for
the A2 equation.

= –     (     A3Dkk + 2aijDij – 3ajkakiDij )

–      (     A3Pkk + 2aijPij – 3ajkakiPij )

–      (     A3Πkk + 2aijΠij – 3ajkakiΠij )

+      (     A3εkk + 2aijεij – 3ajkakiεij )
·································(27)

Because A is a scalar and vanishes at the wall and
shear-free boundaries as shown in Fig. 6, its
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introduction into the damping function of the eddy
viscosity allows one to form a physically and
mathematically correct model.

3. 2  Nonlinear eddy viscosity modelling
Another important topic in the recent eddy

viscosity modelling is a nonlinear extension of the
(linear) stress-strain relation, Eq. (3).  This approach
forms a nonlinear eddy viscosity model (NLEVM).
Note that a sort of the NLEVM is sometimes called
an explicit ASM due to its optimization process for
the coefficients.

The original linear stress-strain relation does not
produce meaningful differences between the normal
stresses.  For example, in shear flows where only S12

is nonzero, Eq. (3) leads to isotropic turbulence as:

while the values of the normal stresses are very
different from one another in actual flow cases.
Thus, the linear model lacks the capability of
predicting anisotropic turbulence in many
industrially important flows such as turbulence-
driven secondary flows, swirling flows, etc.

Although the ideas of NLEVM themselves
emerged back in the 70's35,36), until recently, the
models of this type were not widely explored.  Many
attempts at developing and using such schemes have
been recently made37-41).  They all introduced
quadratic terms into Eq. (3) as:

where the vorticity tensor, Ωij ≡ ∂Ui / ∂xj – ∂Uj / ∂xi.
The quadratic c1~c3 terms produce discrepancies

between the normal stresses.  These quadratic
NLEVM's thus successfully reproduced turbulence
driven secondary flows, however, they did not have
sensitivity to streamline curvature (including swirl).
Therefore, in order to capture the streamline
curvature effects, Craft, Launder & Suga24) further
introduced cubic terms as:

In fact, the cubic c4~c7 terms have sensitivity to
swirl and streamline curvature. They afterwards
modified their cubic NLEVM coupling with the
effects of A2 to correctly mimic near-wall
turbulence27-29).

Pope36) showed that the generalized nonlinear
stress-strain relation was mathematically equivalent
to an explicit form of the ASM.  He generalized the
nonlinear constitutive relation using the Cayley-
Hamilton theorem and solved a matrix obtained by
substituting the Reynolds stresses in Eq. (19) with
the constitutive relation.  Although he outlined the
procedure to obtain the coefficients, he was not able
to provide the coefficients generally due to the
complexity of the algebra.  In fact, the generalized
constitutive relation includes up to fifth-order
products of strain and vorticity tensors.  Recently,
following Pope's methodology, Taulbee42) and Gatski
& Speziale43) proposed elaborate coefficients for the
three-dimensional flows.  Their NLEVM's (explicit
ASM's) thus include up to fifth-order terms.
However, the roles and necessity of fourth- and
fifth-order terms have never been clarified.

Very recently, the author pointed out an inherent
defect in the stress-strain relation and tried to
remove it.  In shear-free turbulence appearing, for
example, near the free surface of an open channel
flow, all strain and vorticity tensor components
vanish.  The linear and nonlinear stress-strain
relations thus always return isotropic turbulence
there (e.g., all the terms on the right hand side of Eq.
(30) become 0 in this case) while the actual
turbulence is significantly anisotropic.  Therefore,
the author introduced the following additional term
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Aij composed of the gradient of the stress flatness
parameter A into the cubic stress-strain relation: Eq.
(30).

Since the distribution of A has a steep gradient near
the shear-free boundary as shown in Fig. 6, this
additional term does produce anisotropy of
turbulence there.  The author showed its usefulness
for capturing shear-free turbulence combining it with
the k-ε-A three equation NLEVM34)

3. 3  Comparisons of model performance
This subsection displays the near-wall

performance of typical linear and nonlinear EVM's
listed in Tables 2 and 3.  All the models listed,
except for the W9244), the SA45) and the ARG46)

models, have already been discussed or referred to.
The W92 model is the latest version of the linear k-ω
model.  Among the nonlinear EVM's, the SA and the
ARG models are, respectively, a k-ε model and a k-ω
model based on the nonlinear stress-strain model of
Gatski & Speziale43).

Fig. 7 compares the predicted turbulent shear

stress distributions with the DNS13) data near the
wall.  All the models reproduce the DNS results
quite well, though the profile by the W92 model
distinctively deviates from the data in the region y+< 20.

The predicted turbulence energy distributions
shown in Fig. 8, however, display an interesting fact.
The recently proposed nonlinear SA and ARG
models predict very similar profiles to that of the
rather dated NY model and they are poorer than that
of the 24-year-old LS model.  Except for them, the
recent versions of EVM's have shown quite
successful performance.  In fact, many of them are
in excellent agreement with the DNS.

Since modelling the ε (or ω) equation is much
more difficult than modelling the k equation, thus
many of the predicted ε distributions poorly accord
with the DNS data as seen in Fig. 9.  Nonetheless,
the result of the nonlinear CLS model shows quite
excellent agreement with the DNS, and those of the
linear KK and the nonlinear AKN models are also
fairly acceptable.

Another important feature of a LRN model is grid
dependency on the predicted results.  Fig. 10 shows
the grid dependency on the predictive performance
of the mean velocity in the pipe flow measured by
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Table 3 Nonlinear EVM's.

Model transport near-wall

variables parameters

NY: Nisizima & Yoshizawa(1987)38) k, ε Rt, y
+

MK: Myong & Kasagi(1990)40) k, ε Rt, y
+

SA: Speziale & Abid(1995)45) k, ε Rt, Ry

ARG: Abid, Rumsey & Gatski(1995)46) k, ω Rt

AKN: Abe, Kondoh & Nagano(1995)19) k, ε Rt, y
*

CLS: Craft, Launder & Suga(1995)29) k, ε, A2 Rt, S, A2

Suga(1997)34) k, ε, A Rt, A

Table 2 Linear EVM's.

Model transport near-wall

variables parameters

LS: Launder & Sharma(1974)8) k, ε Rt

W92: Wilcox(1992)44) k, ω Rt

YS: Yang & Shih(1993)22) k, ε Rt, S

RM: Rodi & Mansour(1993)17) k, ε Rt, y
+

KK: Kawamura & Kawashima(1994)20)  k, ε Rt, y
*

CI: Cotton & Ismael(1994)26) k, ε, S Rt, S

~

~

~

~

~

Aij = ca
'τ 2  

∂ Ak

∂x i

 
∂ Ak

∂x j

 –1
3

 δij 
∂ Ak

∂x k

 
∂ Ak

∂x k

 

·························(31)



Laufer47).  The solid lines noted as 100% are the
results with a fine enough grid whose first grid node
is located just under unity of the wall unit (y1

+< 1.0).
The lines noted as x% are the results using a grid
whose grid node density normal to the wall is x% of
that of the fine enough grid.  Obviously, the LS
model is very sensitive to the grid density and many
of the other LRN models need at least a 50% grid
node density of the fine enough grid.  (The first grid
node's y+ of this 50% grid is about 2.0: y1

+~2.0.)
The nonlinear CLS, MK and NY models, however,
show equivalent performance even with the 40%
grid distributed from y1

+~4.0.  On the whole, it can
be said the CLS model shows the best performance
in the models compared in Fig. 10 in terms of the
predictive accuracy and the grid sensitivity.

Fig. 11-13 show the predicted near-wall turbulent
intensities by the NLEVM's compared with the
DNS13) data.  The CLS model clearly demonstrates
the best performance while the other models do not
successfully mimic the stress anisotropy.

The near-wall performance of the author's k-ε-A
three equation NLEVM is comparable to that of the
CLS (k-ε-A2) model though it has not been

apparently shown.  As mentioned in §3.2 and clearly
shown in Fig. 14, however, the author's k-ε-A
NLEVM can capture stress anisotropy near the free
surface while the CLS model cannot.  This model
performance of the k-ε-A model is believed to be
very useful if the model is used to calculate heat and
mass transfer through a shear-free interface which is
one of the key phenomena of the environmental
issues.

4.  Conclusions

The following aspects may be summarized
through this review covering the recent research
works on the eddy viscosity modelling of turbulence.

1. Until recently, the wall distance y was often
used in the low-Reynolds-number eddy viscosity
models, while the use of y limited the model's
applicability.

2. Many researchers have started to find general
local parameters for detecting wall effects.  The
proposed near-wall invariant parameters so far are
the strain invariant S, the stress invariant A2 and the
stress flatness parameter A. Although they require
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solving their transport equations, the models
including their effects showed encouraging results.

3. The use of nonlinear terms in the stress-strain
relation  is essential to predict complex strain fields.
Moreover, the cubic terms are necessary to mimic

streamline curvature and swirl effects.
4. The combined effects of the new local near-wall

parameters and nonlinear stress-strain relations have
significantly extended performance of the eddy
viscosity scheme.  In particular, the use of A has
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extended the applicability of the eddy viscosity
model toward capturing shear-free turbulence which
is very important for environmentally oriented
issues.

5. Overall, it may be concluded that the nonlinear
k-ε-A three equation model is the most promising
scheme in the eddy viscosity models of turbulence.

In the very near future, the author believes that the
standard k-ε model in industrial applications will be
replaced with the recently developed low-Reynolds-
number nonlinear eddy viscosity models.

To achieve the full potential of the eddy viscosity
modelling, however, further attention is expected for
optimizing the transport equation for ε.  Since the rapid
development of DNS will be providing much more
detailed data for the modelling, the existing too
empirically modelled ε equations will soon be replaced.
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