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Abstract

In automotive body structural design, Computer
Aided Engineering (CAE) has been widely used
in order to evaluate noise, vibration, and
harshness (NVH).  A CAE engineer typically
uses a large-scale finite element model exceeding
1 million degrees of freedom to improve the
NVH performance criteria.  It is, however,
difficult for a CAE engineer to propose a good
modification candidate for the NVH reduction to
an automotive designer, because the FEM
calculation is very time-consuming and many
design candidates must be considered for a large-
scale model.  Therefore, quick and effective

design calculation procedures are needed to
overcome these problems, especially in the recent
virtual prototyping development process.  In this
paper, a new optimal design method using a
reduction scheme based on the physical
coordinates under many design constraints
regarding crash-worthiness is proposed in order
to overcome these problems.  That is, we
determine the appropriate location and additional
scalar spring constants by minimizing the
acceleration of the observation grid.  The
effectiveness and availability of this method are
confirmed using an example.
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1.  Introduction

New CAE tools based on the concept of First
Order Analysis (FOA) usually use beam or panel
elements with relatively small numbers of degrees
of freedom and which is based on basic theories of
structural mechanics.  In a wider sense, however, it is
considered as an analysis technique that easily
provides design engineers with valuable
information.  Conventional Computer Aided
Engineering (CAE) tools, on the other hand, are
used by CAE engineers for high-precision,
quantitative evaluation by making full use of large-
scale Finite Element (FE) models.  Conventional
CAE provides detailed information by visualizing
deformation and stress fields, but is not always
capable of providing useful information to design

engineers.  For example, for noise and vibration
problems on the frequency range over 100 Hz, like
those found in an automobile, we have to use a
large-scale FEM model with more than one million
degrees of freedom, in order to consider the effect of
local stiffness.  The use of more detailed models has
contributed to the improvement of the calculation
precision but, at the same time, has made it difficult
to achieve efficiency in the development phase
because of the need for enormous amounts of
calculation time.  Thus, we need a new analysis
technique, that a simple model with a suitable level
of precision is constructed and a valuable
information is efficiently obtained using this model.
We regard this as being part of the technique of FOA
because this technique gives design engineers
valable information for design based on the
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calculation results, both easily and promptly.
As a result of our basic studies into FOA, this

paper presents an optimal design method that applies
the reduction technique using frequency response
functions to an FEM model for a vibration problem.
In this optimal method, the effectiveness of
reinforcement is estimated using added scalar
springs as design variables.  Chapter 2 first presents
the general flow of this optimal design method, then
examines the main points of the method in detail,
namely, (1) the sensitivity analysis method, (2) the
reduction method, and (3) the optimal design
method.  Chapter 3 demonstrates the validity of the
method using a simple example of a body-in-white.

2.  Analysis method

2. 1  Flow of optimal design method
We propose an efficient optimization method in

which the candidate design variables are selected to
create a reduced model, and optimization
calculations are carried out on the reduced model.
The procedure is as follows:

(1) Set the directions of excitation points and
evaluation points, and the target frequency range and
its step width.

(2) From an entire large-scale FEM model with n0

degrees of freedom, select n1 degrees of freedom and
m1 elements with those degrees of freedom, using
inter-node distance and angle in the design domain
as thresholds.  These elements form what we will
call a stiffness sensitivity evaluation model.  The
elements used in this paper are scalar spring
elements added between pairs of nodes.

(3) Using frequency response functions with n1

degrees of freedom, calculate the stiffness sensitivities
of the m1 elements; then, using those values as a
threshold, select m2 elements as candidate design
variables, which consists of n2 degrees of freedom.

(4) Create a compliance matrix, using frequency
response functions of n2 degrees of freedom.

(5) From the m2 elements, select m3 elements as
design variables which consist of n3 degrees of
freedom, taking sensitivities and design feasibility
into consideration; then create a dynamic stiffness
matrix with n3 degrees of freedom from the
compliance matrix obtained in step (4).

(6) Perform optimization calculations while

modifying the dynamic stiffness matrix with n3

degrees of freedom in succession.  If the objective is
not achieved, return to step (5) and repeat the
optimization calculations with new design variables.

(7) Add the obtained stiffness values to the entire
model with n0 degrees of freedom, and perform
frequency response calculations to confirm the
effectiveness, including the effectiveness on
domains outside the target domain.

The number of degrees of freedom analyzed is
reduced at each step (n0 > n1 > n2 > n3).  The
minimum unit of the n3 degrees of freedom at which
the optimization calculation is performed is reduced
to four: four-degrees of freedom at excitation point,
evaluation point and two points for adding stiffness.

2. 2  Sensitivity analysis method
Assuming the displacement vector to be {U},

external force vector {F}, stiffness matrix [K],
damping matrix [C], mass matrix [M], and angular
frequency ω, an discrete equation of motion of FEM
is expressed by

([K]+jw [C] - w2[M]){U}={F}     ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (1)

By expressing the matrixes in the parenthesis in
Eq. (1) with a dynamic stiffness matrix [B(ω)]
expressed with a complex function for ω, gives us

[B(w)]{U(w)}={F(w)}                 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (2)

Let us introduce mutual mean compliance C when
we apply an practical periodic external force {F} as
an evaluation quantity.2) As the inner product of
the vibration response vector {U} when {F} is
applied and the virtual unit period external force
{Fl} = {0, ... , 0, f1 = 1, 0, ... , 0}T that is applied to
the l-th degree of freedom at which to evaluate
vibration, C is expressed by

C ={F l}T{U}= {U l}T [B]T {U}=ul ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (3)

where {Ul} is the vibration response vector when
{F l} is applied.  {F l} is the normalized
dimensionless quantity that is applied only to the l-th
degree of freedom, and {Ul} assumes the dimensions
of the compliance.  Therefore, C is equivalent to the
response displacement ul at the l-th degree of
freedom at which we evaluate the vibration in {U}.

Now, assuming the design variable, that is, the
stiffness value of the scalar spring to be added to the
degrees of freedom i and j at nodes to be X, the
sensitivity of X to ul is expressed by Eq. (4), ∂[B]/∂X
is 1 for the ii and jj elements, -1 with the ij and ji
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elements, and 0 for all other elements, and is finally
expressed by Eq. (5)3).

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (4)

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (5)

Thus, the sensitivity of the stiffness value to the
vibration response to be evaluated can be determined
analytically with only the vibration response results
obtained when two external forces {F} and {Fl} are
applied.  This offers the following advantages:

(1) Inverse matrix calculation for the dynamic
stiffness matrix is not required.  Thus we can obtain
the sensitivities using only calculation results of a
commercial FE software.

(2) The sensitivity value does not directly depend
on the dynamic stiffness matrix and, therefore, is not
affected by reduction.

2. 3  Reduction method using frequency 
response functions

In this section, in order to reduce the dynamic
stiffness matrix, we use frequency response
functions.4) One of the reasons for this is that the
effect of adding stiffness can be evaluated directly,
but another is that the precision of the results for
vibration response is assured even after reduction.
With mode reduction, the precision of the results
depends on the numbers to be reduced and, strictly
speaking, the modal results will always contain
errors.

The dynamic stiffness matrix [B] in Eq. (2) is
separated into the area of the degrees of freedom to
be reduced a and the area of the degrees of freedom
to be erased b, which are expressed by the following
equation5):

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (6)

In Eq. (6), because no external force is applied to the
area b, a reduced dynamic stiffness matrix [Ba] is
expressed by

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (7)

We do not, however, use the reduction procedure
with Eq. (7) here.  The area of the degrees of
freedom to be reduced a is very small in comparison
with that of the degrees of freedom to be erased b.

Ba  = Ba  - Bab  Bb
-1 Bba

Ba Bab
Bba Bb

 Ua
Ub

 = Fa
0

∂ul

∂X
 = - (ui

l- uj
l)(ui - uj)

∂ul

∂X
 = - U l T 

∂[B]

∂X
U

Therefore the calculation of an inverse matrix [Bb]
-1

is very time-consuming.  Moreover we have to
construct a reduced model every time we change the
elements to be adopted as design variables.  Thus,
we first construct the compliance matrix [Hc] of the
area of n2 degrees of freedom selected as candidate
design variables.  Assuming the area of the degrees
of freedom selected as candidate design variables to
be c and the area of the other degrees of freedom to
be d, [Hc] is expressed by

⋅ ⋅ ⋅ (8)

[Hc] may be constructed from the entire dynamic
stiffness matrix, using the above equation.
Alternatively, it can be constructed from the
frequency response functions obtained when the unit
matrix Ic is applied to the area of the selected
degrees of freedom c, as follows:

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (9)

Then, we separate [Hc] into the area of the degrees
of freedom to be reduced a and that of the degrees of
freedom to be erased e, and determine the reduced
dynamic stiffness matrix through inverse
matrix calculation on the element [Ha] in the area a.

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (10)

Thus, using the reduced dynamic stiffness matrix
, Eq. (6) can be expressed as

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (11)

In order to maximize the efficiency of the
calculation, it would be best to construct [Hc] with
Eq. (8).  In commercial FEM software, however, the
complex values may be divided into real and
imaginary parts or Component Mode Synthesis may
be used, when calculating the equation of motion
(1).  Therefore, it is difficult to directly extract the
entire dynamic stiffness matrix.  In this case, a
reduced dynamic stiffness model can be constructed
from the vibration response calculation results, using
Eqs. (9) and (10).  The fact that a reduced model can
be calculated using output results only, as the
previous section, indicates that this optimal design
problem can be solved using not only the results
obtained from calculation (FEM), but also ones
obtained from experiments.

Ba  Ua  = Fa

Ba

Ba  Hc
-1  Hc  = Ha Hae

Hea He
 

Ba

Bc Bcd
Bdc Bdd

 Hc
Hdc

 = Ic
0

Hc  = Bc
-1 =  Bc  - Bcd  Bd

-1 Bdc  -1
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2. 4  Stiffness optimal design method
We define the optimal design problem in such a

way as to minimize the vibration response ul of the
degrees of evaluation point freedom l when the
periodic external force {F} is applied, using a
reduced equation of motion (10), as follows.  Here,
as a design variable, we use the stiffness value X of
the scalar spring to be added, and minimize the real
value e resulting from multiplying the complex
number ul by the complex conjugate ul*, where ul

and e are functions having angular frequency ω as a
variable, and for practical applications, vibration
reduction within a certain frequency band is
required.  The reason for this is that reducing the
vibration response at a single frequency may simply
mean that the resonance frequency has shifted,
possibly causing high-level vibration to occur in the
vicinity of that frequency.  Thus, we solve a single
optimization problem such as that shown below,
with E as an objective function, which results from
adding the values of em = e(ωm) made discrete into M
elements with a certain frequency range and step,
i.e., the products of ulm = ul (ωm) and uml* = ul*(ωm)
at individual frequencies.  We set the upper limit
and the lower limit X of the design variable as side
constraints.

⋅ ⋅ ⋅ ⋅ (12)

The sensitivity S of the design variable X to the
objective function E is expressed by

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (13)

Using Eq. (5), Eq. (13) is expressed by

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (14)

where uim and ujm are the response displacements at
the degrees of freedom i and j to which the stiffness
X is added when {F(ωm)} is applied, and ul

im and ul
jm

are the response displacements (compliances) at the
degrees of freedom i and j when the normalized unit
periodic external force {Fl(ωm)} that is applied only
to the l-th degree of freedom is applied.

S = - 2real ulm uim
l  - ujm

l  uim - ujm∑
m=1

M

= ulm 
∂ulm

∂X

*
+ 
∂ulm

∂X
 ulm

*  = 2real ulm 
∂elm

∂X∑
m=1

M

∑
m=1

M

S = 
∂E
∂X

 =
∂em

∂X∑
m=1

M

 = ulm 
∂ulm

*

∂X∑
m=1

M

 + 
∂ulm

∂X
ulm

*

subj. to X  ≥ X ≥ X

min E X  = em X∑
m=1

M

 = ulm X  ⋅ ulm
*  X∑

m=1

M

By calculating the sensitivity with Eq. (14) while
reducing the dynamic stiffness matrix with
Eq. (10) sequentially with respect to X, we can solve
the unconstrained optimization problem of Eq. (12)
with a Quasi-Newton method.6) If there is more than
one design variable X, the sensitivity S is expressed
by a vector, and must be reduced as a matrix
containing all the degrees of freedom of the
elements constituting the stiffness X to be added.

3.  Numerical calculation examples

We will now demonstrate the validity of this
optimal design method by using an FE model
consisting of the shell elements shown in Fig. 1.
Here, we proceed with a study that follows the flow
presented in 2. 1, using a frequency response
calculation by the commercial FEM software
(MSC/NASTRAN).  The problem that we solve
involves minimizing the acceleration in the x
direction in the glass portion (marked with a circle
(  ) in the figure) when a unit periodic external force
F is applied to the region in the direction shown in
Fig. 1.  Here, we convert the equations given above,
in which displacements are used as evaluation
quantities, into formulas in which accelerations are
used as evaluation quantities, using the relation

(t) = ∂2u(t)/ut2 = -ω2u(t).  Because the response
acceleration peaks from 140 through 150 Hz, the
frequency range for optimal design is set from 130
through 155 Hz, and the step width is set to 1 Hz.

We assume that the area excluding the glass

u 

ul

Ba

Ba
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Fig. 1 FEM model of a body-in-white.

y x
z

Observation grid

1176  grids,  1216  shell elements

Length : 4000 (mm)

X



portion is the object of the design, and extract the
nodes at which to study the stiffness sensitivity, as
well as the elements connecting these nodes
(stiffness sensitivity evaluation model).  The model
shown in Fig. 1 is a simple one in which the inter-
node gaps are relatively large, so that we set the
nodes and elements constituting the individual sides
of the shell elements as defaults, and set the other
thresholds as (1) elements whose inter-node length L
is from 250 to 300 mm and (2) elements connecting
nodes whose angle θ from the individual sides of the
shell elements in Fig. 1 is from 30° to 180°.  The
resultant stiffness sensitivity evaluation model is
shown in Fig. 2.  This model has more than 3000
elements.  As shown in Fig. 2, the inter-node
stiffness in a portion in which there are no shell
elements can be evaluated.  This is useful when
considering the addition of a structure to a region in
which there is currently no structure, rather than
modifying an existing structure.  The stiffnesses that
we consider here are those in the three translation
directions, and the number of stiffness values with
which to calculate the sensitivity is equal to the
number of elements × 3 (number of directions), that
is, approximately 10000.

From the frequency response calculation results
obtained by FEM, we can calculate the sensitivity
of the stiffness value X of each element in the
stiffness sensitivity evaluation model shown in
Fig. 2, using Eq. (9).  Here, from the sensitivity
calculation results, we select the elements as
candidate design variables, using a value equal to
10% of the maximum as a threshold.  The selection
results are shown in Fig. 3.  In Fig. 3, the portions
indicated by the heavy lines are those elements that
have high sensitivity.  As a result, the regions
regarded as candidate design variables are reduced
from 1176 nodes to 107 nodes (321 degrees of
freedom) and from 3577 elements to 75 elements
(225 candidate design variables).

For the degrees of freedom at nodes, at excitation
points, and at the evaluation points of the elements
selected as described above, we construct an
inertance matrix.  This can be determined by using
an FEM frequency response calculation when a unit
input is applied at each degree of freedom, as shown
in Eq. (9).  From this matrix, we extract the elements

with the degrees of freedom, the degrees of freedom
at excitation points, and those at evaluation points as
design variables, and then perform an inverse matrix
calculation with Eq. (10) to construct a reduced
dynamic stiffness matrix.

Using the reduced model, we solve the
optimization problem for the single design variable
given in Eq. (12).  In this example, many of the
elements selected as candidate design variables as
shown in Fig. 3 are symmetrical, so we think it
appropriate to handle these elements as identical
design variables.  If we consider this, the reduced
model will be very small with a total of 7 degrees of
freedom; 4 degrees of freedom constituting the
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Fig. 2 Modified stiffness sensitivity evaluation Model.

Fig. 3 High-sensitive parts.
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design variable, 2 degrees of freedom at the
excitation points, and 1 degree of freedom at an
evaluation point.

The results of extracting those regions in which
the response acceleration of the degree of freedom
at an evaluation point can be reduced by 25% or
more are shown in Fig. 4.  The regions indicated by
the heavy lines are those in which the vibration
response of the glass surface can be reduced by
adding the calculated individual optimal stiffness
values in the prescribed direction.  For example, in
region a shown in Fig. 4, an optimal stiffness value
of 1100 N/mm in the z direction is calculated.  The
results of adding a scalar spring with this value to
the portion that is symmetrical to a, and then
calculating the frequency response, are shown in
Fig. 5.  These results show that the vibration
response on the glass surface is reduced in the
specified frequency band.  Similar vibration
reduction effects can be confirmed in the other
regions shown in Fig. 4.

Based on the results obtained from the stiffness
optimization calculation shown in Fig. 4, we
confirmed the vibration reduction effect when a
reinforcement having a specific structure is added.
As a reinforcement, we considered a steel plate with
regions a and b in Fig. 4 as its two sides and with a
thickness of 3 mm, and added it as a shell element to
the FEM model shown in Fig. 1.  The results of
calculating the vibration response on the glass
surface are shown in Fig. 6.  From these results, we
can confirm that a reduction effect similar to that

ul

shown in Fig. 5 can be achieved in the specified
frequency band.  The weight of the reinforcement is
approximately 1 kg, which increases the total weight
of 122 kg by less than 1%.

4.  Conclusions

In this paper, we proposed a new optimal design
method that provided effective information
regarding reinforcement of an automotive body
structure in the final design phase, and confirmed the
availability of the method using a practical example.
The results obtained here are summarized as
follows:

(1) The dynamic mutual mean compliance was
formulated as the measure of the target vibration,
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Fig. 5 Effect of reduction by the additional stiffness.

Fig. 6 Effect of reduction by the additional structure.
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and the selection method of practical evaluation
parts under the measure of sensitivities of the target
vibration was proposed.

(2) The new reduced method based on frequency
response functions was presented.

(3) The optimization method, where the square of
acceleration and additional scalar spring constants
were taken an objective function and design
variables, respectively, was proposed.

(4) It was confirmed that some appropriate
characteristic information such as the local locations,
the directions, and the additional scalar spring
constants was obtained within a short time in an
example.
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