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Abstract

Computer Aided Engineering (CAE) has played
an important role in automotive development.
CAE numerically estimates the performance of
automobiles and proposes alternative ideas that
lead to higher performance without building
physical prototypes.  However, current CAE can
not usually be used in the initial design phase due
to its sophisticated, difficult, and complex func-
tions and characteristics.  First Order Analysis
(FOA) has been proposed to provide a new type
of CAE for design engineers.  In this report, we
present a sizing optimization method based on the

response surface method.  This method can
comparatively deal with any objective functions
such as the structural stiffness and the weight of a
structure.  First, we briefly review the outlines of
the response surface method, and benefits when
using this method in the numerical analysis.
Next, a sizing optimization program is intro-
duced, and its functions are explained in detail
using a simple two-dimensional optimization
problem.  Finally, some examples are provided to
confirm the availability of the method proposed
here.
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1.  Introduction

In the field of automotive development, advances
in Computer Aided Engineering (CAE) nowadays
allow us to quantitatively estimate the performance
of automobiles to some degree, and to make
structural proposals to improve the performance.
As a result, CAE greatly contributes to reducing the
number of prototyping products and the
development period.  Current CAE are, however,
used to perform numerical experiments that replace
prototyping with analyses.  For this reason, it is
required CAE to offer a high level of quantitative
precision in the current.  Since modeling and
analysis methods have become complicated,
accordingly non-specialist analysts can hardly
execute these methods.  Moreover, calculation in

the current CAE requires an enormous amount of
time for both the modeling and analysis.  For the
reasons described above, we often come across
situations where it is difficult for design engineers
themselves to use CAE at the concept design stage,
which is the first stage of the design process.

In response to such situations, First Order Analysis
(FOA)1) has been proposed as a new CAE concept to
enable design engineers themselves to easily use
CAE in the initial design stage.

Using FOA tools, design engineers can create
good design candidates in the concept design stage,
while analyzing physical properties of them
simultaneously.  And, in addition to this, to assist
these design engineers, FOA offers optimal
calculation techniques that encourage the use of
topology optimization and sizing optimization.2)
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In FOA, we use an optimization technique based
on a response surface methodology that offers speed
and convenience as the size optimization.

In this paper, we briefly explain the response
surface methodology applied to sizing optimization
in FOA, and confirm its validity and effectiveness
using simple numerical examples.

2.  Optimization using the response surface
methodology

Response surface methodology, which has recently
attracted attention as an optimization technique in
the field of numerical analysis, was advocated by
Box & Wilson in 1951.3) Later, due to the research
of Taguchi method4) by Taguchi and various design
of experiments by Myers & Montgomery, et al., it
has developed into the response surface
methodology5) that we know today.  This technique
has been put to practical use in the field of quality
engineering for purposes such as product process
optimization and variation reduction, especially in
the United States.

In around 1995, response surface methodology
was first applied to the field of numerical analysis.
In the United States, it was used by Haftka, et al., to
optimize6) composite wings for use in ultra-high
capacity airplanes.  At the same time, in Japan,
Shiratori, et al., applied it to the optimization7) of
automotive seat frames, but with a totally different
concept.

2. 1  Response surface methodology in 
numerical analysis

The response surface methodology is a type of
optimization that applies an approximation
technique to the objective and other functions of an
optimization problem.  For approximation, it uses a
function called a response surface.  A response
surface is a function that approximates a problem
with design variables and state quantities, using
several analysis or experiment results.  In general,
the design of experiments is used for analysis or
experiment point parameter setting, and the least
square method is used for function approximation.

Figure 1 shows the flow of conventional
optimization.  In the field of numerical analysis, this
technique is commonly used to determine the
sensitivities for individual numerical models and to

perform optimization using the sensitivities and
numerical models.  This technique attains
convergence by repeating numerical analysis and
sensitivity analysis until the optimal solution is
obtained.  As a result, if the model scale is large, an
immensely long calculation time and huge amount
of computing resources are required, making it
impractical to even attempt the optimization.  For
problems with very high non-linearity and for
multimodal problems, there may be cases in which
no solution can be found because of problems such
as the inability to obtain sensitivities or a lapse into a
local solution.  To solve such problems with
conventional optimization, the response surface
methodology has been adopted.

With the response surface methodology,
optimization conditions are first set, and then a
response surface is created between the design
variables and objective functions or constraint
conditions.  And, by using the response surface, an
optimal solution can be found with a conventional
optimization technique.  Because only a very simple
function, called a response surface, is used in the
optimization calculation, it can be completed very
quickly (Fig. 2).

It should be noted that the precision of an optimal
solution depends on the approximation precision of
the response surface.

As described earlier, with the response surface
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Fig. 1 Conventional optimization.



methodology, parameter setting is generally
performed with design of experiments, and the
numerical analysis is repeated as many times as set.
Then, based on these results, the objective functions
or constraint conditions are approximated with a
response surface.  Thus, by using design of
experiments the reliability of the response surface
can be increased.

2. 2  Response surface
The response surface is an approximation of the

relational expression of the response y predicted
from n (n > 1) design variables xi (where i = 1, ..., n)
(Eq. (1)).

y = f (x1 ⋅⋅⋅ xn) + ε        ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (1)

In general, for this function f, a polynomial is often
used because it is easy to handle; a non-linear
function that can be linearized through variable
transformation (such as an exponential function)
may also be used.

In special cases, neural networks, splines, and
Lagrange's interpolations can also be called response
surfaces.  These functions are, however,
disadvantageous in that they do not correspond to
the effective design of experiments and that they
cannot be evaluated statistically.

2. 2. 1  Least square method
For response surfaces, linear functions (and

functions that can be linearized) are advantageous in
that their coefficients can be determined easily using

the least square method and that statistical
evaluation can be conducted on them once their
coefficients have been determined.  For this reason,
function approximations using the least square
method are used most often with the response
surface methodology.

If a quadratic polynomial is used as a response
function, the response surface is given by Eq. (2):

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (2)

Representing the above with two variables for
simplicity gives Eq. (3):

y = β0 + β1 x1 + β2 x2+ β3 x
2
2+ β4 x

2
2+ β5 x1x2 ⋅ ⋅ ⋅ ⋅ (3)

If, in this expression, we replace the second
degree terms with a single variable (x1

2 = x3 , x2
2 = x4 ,

x1x2 = x5), respectively, this expression is converted
into a multi-variable, linear expression.  Such
conversion is applicable to a third- or higher-degree
polynomial.

If linearization is performed in this way, a linear
regression model can be represented by Eq. (4),
assuming that the number of experiment points
(analysis points) is n and the number of design
variables is k:

y = Xβ + ε               ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (4)

y1 1 x11 x12 ⋅⋅⋅ x1k β1 ε1
y2 1 x21 x22 ⋅⋅⋅ x2k β2      ε2

yn 1 xn1 xn2 ⋅⋅⋅ xnk βn εn

By minimizing the sum of squares of this error, the
unbiased estimator b of the coefficient β is given by
Eq. (5):

b = (XTX)-1 XTy ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (5)

In general, the coefficient of determination R2 is
used to decide whether a regression model is
appropriate.  The coefficient of determination R2

provides an exact match if it is 1 and, if the residual
increases, R2 decreases in the range from 1 to 0.  As
the number of variables increases, the residual
decreases, so that the coefficient of determination
increases in value.  For this reason, to obtain a more
precise regression model judgment, the coefficient
of determination adjusted for the degrees of freedom
Rad

2 (Eq. (6)) is used, which is used for comparing
the residual per unit degree of freedom.

y = β0 + βixi∑
i = 0

n

 + βiixi
2∑

i = 0

n

 + βijxixj∑
i < j

n
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Fig. 2 Response Surface Methodology (RSM).
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SSE / (n-k-1)
R 2

ad = 1 - ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (6)
Syy / (n-1)

Residual sum of squares : SSE = yTy - bTXTy

Response y fluctuation : Syy = yTy - T 2/n

The validity of individual variables to a response
can be determined by conducting t- and F-tests.

2. 3  Design of experiments
Design of experiments is a technique for setting an

efficient experiment point parameter.  This is
equivalent to establishing a parameter for creating a
better regression expression.  This regression
expression itself will be a response surface using the
least-square method, as explained in the preceding
section.

In design of experiments, all variables, even
continuous ones, are thought of as being discrete
"levels".  By discretizing variables in this way, a
design of experiments is advantageous in that it can
reduce the number of combinations and is resistant
to noise.

As a design of experiments, many techniques have
been proposed such as full factorial design,
orthogonal design, central composite design (CCD),
and the D optimization criterion.  In general,
orthogonal design is often used for a linear
polynomial and a CCD is often used for a quadratic
polynomial.  A method that uses orthogonal design
is, however, thought to be easier to use because of
the ease with which levels can be allocated and
because of its efficiency.  An orthogonal design is
outlined here.

2. 3. 1  Orthogonal design
In an orthogonal design, parameter setting

involves allocating levels by using an orthogonal
array.  Table 1 describes an L8 orthogonal array
with two levels.  In this array, the rows indicate the
number of experiments.  Parameters can be set easily
by allocating variable levels to the individual
columns as instructed.

For a linear function, a two-level orthogonal array
is used; for a quadratic function, a three-level
orthogonal array is used.  An orthogonal array for a
function of a third or higher degree can be created.
For a multi-level orthogonal array, however,
experiments will not be orthogonal and, therefore,
for a high polynomial of a second or higher degree,

an orthogonal polynomial is required.  In general,
Chebyshev's orthogonal polynomial is often used.
By using both an orthogonal polynomial and an
orthogonal array, experiments will be orthogonal
even for a multi-level array.

In general, an orthogonal design is very efficient
for functions having a low degree and those in which
the variables do not have interactions.  It is
disadvantageous, however, in that for functions
having a high degree and those in which the
variables have interactions, the number of parameter
sets (number of experiments) increases and the
regression model is limited to an orthogonal
polynomial.  This, however, enables parameter
setting merely by selecting an orthogonal array and,
therefore, offers excellent convenience.

3.  Application to FOA sizing optimization

3. 1  Application models and design variables
In FOA, sizing optimization can be said to play the

role of determining the optimal values of the size of
a shape as determined with a method such as a
topology optimization calculation method, or those
for an existing design example, under those
conditions in which constraints for practical use are
considered.  For this reason, sizing optimization
provides information on the degree of effect on
performance that can be used to determine which of
several design parameters to select.

Thus, in this research, we adopted the response
surface methodology,5) given the flexibility
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Table 1 L8(27) orthogonal arrays.



(convenience) and speed of parameter setting.  Here,
we evaluate the applicability of this technique, using
the problem shown in Fig. 3 as an example, which
consists of six beams.

We assume that the structure in the example is
symmetrical, as shown in Fig. 3, and that the
constituent beams are round bars.  We also assume
that the design variables are the horizontal position
of the center point and the diameter of the cross-
bars.  The position of the center point is normalized
with its ratio to the entire length, and the diameter is
normalized with its ratio to the diameter of the other
members.  We assume two object functions, one for
maximizing the stiffness at the load point and the
other for minimizing the weight.  Table 2 lists the
conditions for optimization.

3. 2  Design of experiments and response 
surface methodology

For this example, we use a three-level orthogonal
array.  For the design variables, we use an L9

orthogonal array because it has two variables.  In
Table 3, design variables are allocated to the L9
orthogonal array.  In Table 4, the stiffness and mass
values resulting from analysis in accordance with the
orthogonal array are given, as normalized with their
respective means.  The objective functions are
turned into a single object function as a weighting
problem, since the property values of interest are
multiple purposes of stiffness and mass.

Figure 4 shows the mean value plots of the design
variables after conducting a variance analysis.  From
this graph, we can easily determine the superiority
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Table 4 Result & Objective function.

Table 3 L9 orthogonal arrays.

Fig. 3 Example of shape optimization.

Table 2 Condition of optimization.



and the degree of influence (sensitivity) of each
design variable.  In this example, we can determine
that the degree of influence of the position of the
center point is high and that the changes can be
represented by a quadratic function.

Figure 5 shows the distribution of the response
surface for the object function in this example.  We
can find the optimal solution by solving this function
as a minimization problem using an appropriate
method such as linear programming.

Figure 6 shows the shape after optimization.
Table 5 lists the optimal values of the design
variables.  The determined optimal solutions
produce a shape in which the two beams form an

6
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Fig. 7 Shape optimization sheet of FOA.Fig. 5 Response surface.
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angle of about 90 degrees at the load point and the
intersection.  The direction determined by this angle
is the direction of principal stress for shear load,
while the axial direction with the highest beam
stiffness is identical to this direction.  These results
correspond well to those of topology optimization8)

using planar elements.  As described above, the
optimal solutions indicate valid results, thus proving
the validity of this technique.

3. 3  FOA program
The FOA program that uses this technique is as

shown in Fig. 7 when applied to the example
described above.  Merely by selecting the design
variable to be optimized and defining the upper and
lower limits, FOA automatically prepares a
parameter set such as an orthogonal array.  Then,
analysis is performed a specified number of times,
and from the results, optimization is automatically
performed with the response surface methodology.
The series of calculations is executed by Microsoft
Excel macros, allowing the designer to obtain an
optimal shape simply by manipulating a sheet
(Fig. 6).

4.  Conclusions

We have introduced an optimization technique that
applies the response surface methodology to sizing
optimization in FOA.  The response surface
methodology was outlined, and the effectiveness
of this technique was confirmed using a two-
dimensional beam problem as an example.

In FOA, it is possible to modify a design
candidates in accordance with an actual design
procedure and, in addition to this, design engineers
can use optimization functions to create an initial
design candidate and to perform sizing optimization
while considering practicality.
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