Processing and Thermoelectric Properties of Highly Textured Na-Co-O Ceramics Fabricated by the Reactive Template Grain Growth (RTGG) Method

The NaCo₂O₄ system has been a p-type candidate material for thermoelectric applications¹⁻³⁾. The single crystal shows large in-plane thermoelectric power due to the layered structure¹), and thus attains a dimensionless figure of merit ($ZT = S^2 \sigma T/\kappa$) greater than 1³), where *S* is the Seebeck coefficient, σ is the electrical conductivity, κ is the thermal conductivity, and *T* is the absolute temperature. NaCo₂O₄ polycrystalline ceramics with a preferred c-axis orientation would have in-plane thermoelectric properties as good as the single crystal.

Topics

Tani developed a RTGG method for highly-textured polycrystalline ceramics using reactive template particles with an anisotropic shape and lattice matching with a product material⁴). Co_3O_4 has a similar crystal structure to $NaCo_2O_4$ and thus it is a candidate material as a reactive template. Therefore, c-axis oriented $NaCo_2O_4$ ceramics could be synthesized by the RTGG method if plate-like Co_3O_4 particles were obtained⁵).

Plate-like Co_3O_4 particles were prepared by a precipitation method. The Co_3O_4 template particles were mixed with Na_2CO_3 powder, a binder and a plasticizer. The slurry was tape-cast by a doctorblade technique, and then the dried monolayer sheet was cut and laminated to produce a multilayer sheet. The multilayer sheets were heat-treated and then sintered. Shin Tajima, Metallic Materials Lab.

topotaxy or topotaxy-like reaction on the oriented Co₃O₄ particles, and highly textured NaCo₂O₄ ceramics were eventually fabricated by the RTGG method. Figure 2 shows a SEM photograph of the oriented NaCo₂O₄ ceramics for a section perpendicular to the preferred {001}-oriented plane. The textured ceramics exhibited a unique microstructure in which plate-like grains with a 1μ m thickness and 10μ m width were aligned parallel to the casting plane. The σ was larger than that of conventionally sintered ceramics²⁾ due to the texture (600S/cm at 300K). However, the σ values were smaller than expected from the high conductivity of a single crystal (5000 S/cm at 300 K¹)). The power factor ($S^2\sigma$, 4-5 × 10⁻⁴ W/mK² above 600K) was not as great as the value reported for conventionally sintered ceramics^{2, 3)}, because the S was not high enough (60-120 μ V/K). The thermoelectric properties of the c-axis oriented NaCo₂O₄ ceramics could be improved with a more precisely controlled composition.

References

- 1) Terasaki, I., et al. : Phys. Rev. B, 56(1997), R12685
- Maeda, E., and Ohtaki, M. : Trans. Mater. Res. Soc. Jpn., 25(2000), 237
- 3) Fujita, K. et al. : Jpn. J. Appl. Phys. Part.1, 40(2001), 4644
- 4) Tani, T. : J. Korean Phys. Soc., **32**(1998), S1217
- 5) Tajima, S., et al. : Mater. Sci. Eng. B, **86**(2001) 20
 - (Report received on Apr. 23, 2002)

Figure 1 shows the XRD profiles of NaCo₂O₄ ceramics prepared by the RTGG method and the JCPDS card. The in-situ reaction was completed during the sintering, and the sintered specimen was identified as NaCo₂O₄ as designed. The parallel surface of the RTGGprocessed specimen exhibited strong diffraction peaks from the {001} planes. This result indicates that oriented NaCo₂O₄ grains were formed through a

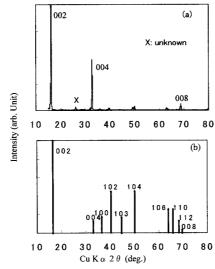
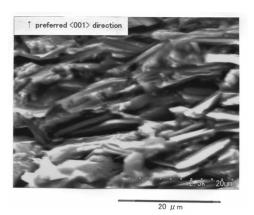



Fig. 1 XRD patterns for (a) NaCo₂O₄ ceramics prepared by RTGG method and (b) JCPDS card of NaCo₂O₄.

Fig. 2 SEM photograph of NaCo₂O₄ ceramics prepared by RTGG method for perpendicular fracture surface to the original sheet plane.

R&D Review of Toyota CRDL Vol. 37 No. 2 (2002. 6) Copyright (C) 2002 Toyota Central R&D Labs., Inc.