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  Under the existence of an external force, a lat-
tice Boltzmann method (LBM) is derived by dis-
cretizing the Boltzmann equation with respect to 
velocity, space and time.  The LBM is applied to 
simulations of flow through three-dimensional po-
rous structures of Nafion polymer membranes.  
Geometry data of Nafion are constructed based 
on the result of a dissipative particle dynamics 
simulation for three values of water content, 

10%, 20%, and 30%, and are used as the geome-
try input for the LBM.  Using Darcy's law, the 
permeability of the porous structure is extracted 
from the results obtained by two kinds of LBM, 
the LBM under an external force and the LBM un-
der a pressure gradient.  The two types of LBM 
are found to produce permeabilities that are in 
good agreement with each other.
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1. Introduction

The Lattice Boltzmann method (LBM) 1, 2) has
recently attracted considerable attention in the an-
ticipation of simulating fluid flows in porous media
and in multiphase states, which are difficult prob-
lems to solve by conventional computational fluid
dynamics techniques.

This method and its predecessor, the Lattice-
Gas method (LGM), were found to be easily ap-
plied to fluid flows in porous media immediately
after their discovery. 3) Buckles et al. 4) and
Auzerais et al. 5) investigated flow through porous
rocks using the LBM and calculated the permeabil-
ity of these rocks 6) , i.e. the fundamental physical
quantity of porous media. They found the calcu-
lated value of permeability to be in good agreement
with that obtained experimentally.

In the present study, we apply the LBM to flow
analysis of Nafion polymer membranes, the best-
known proton conducting electrolyte of fuel cells.
The greatest problem in applying the LBM is de-
termination of the structure of the porous media.
Two possible approaches to this problem are: (i)
constructing a three-dimensional digital image of
the pore space using X-ray computer tomography
(CT); (ii) mimicking by simulation the manufac-
turing process used to create the actual porous
material. We cannot apply the first approach to
Nafion polymer membranes, because the resolu-
tion of X-ray CT, a few µm at best, is insufficient
to resolve the nanoscale pore structure of Nafion.
Hence, we adopt the second approach, and fabri-
cate the morphology of Nafion polymer membranes
using a dissipative particle dynamics (DPD) tech-
nique. 7, 8)

2. Lattice Boltzmann method

Historically, the Lattice Boltzmann method de-
veloped from the Lattice-Gas method. 9) Re-
cently, the LBM is proved to be a special dis-
cretized form of the continuous Boltzmann equa-
tion (CBE). 10, 11) We derive an LBM with an
external force from the CBE in Sec. 2.1. We for-
mulate the method of applying the LBM to porous

media in Sec. 2.2.

2.1 From Boltzmann equation to LBM

For the case in which an external force f exists,
the continuous Boltzmann equation with the BGK
approximation 12) for the collision term is written
as

∂f

∂t
+ e • ∂

∂r
f + f • ∂

∂e
f = −1

τ
(f − f eq) , (1)

where f is the distribution function of a spatial co-
ordinate r and a velocity e, and τ is the relaxation
time. The local equilibrium distribution function
f eq is described by the Maxwell distribution:

f eq =
ρ

(2πRT )
D
2

exp

[
−(e− u)2

2RT

]
. (2)

Here, R is the gas constant; T is the temperature;
D is the spatial dimension. The local density ρ and
the local velocity u are calculated as the moments
of the distribution function:

ρ =
∫

f de, (3)

ρu =
∫

ef de. (4)

Since in this study we are considering the case in
which deviation from the local equilibrium is small,
the derivative of the distribution function with re-
spect to the velocity in Eq.(1) can be approximated
as 13, 14)

∂

∂e
f ≈ ∂

∂e
f eq = −(e− u)

RT
f eq. (5)

Consequently, we obtain the following equation as
the starting point for deriving the LBM:

∂f

∂t
+e• ∂

∂r
f− f • (e − u)

RT
f eq = −1

τ
(f − f eq) . (6)

The LBM with an external force is derived
through the discretization of Eq.(6) with re-
spect to the velocity, spatial and time coordi-
nates. 10, 11, 15–17) We first execute the discretiza-
tion in the velocity space:

∂fi

∂t
+ei• ∂

∂r
fi− f • (ei − u)

RT
f eq

i = −1
τ

(fi − f eq
i ) ,

(7)
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where ei is the discrete velocities, the distribution
function fi and the local equilibrium distribution
function f eq

i are defined as

fi ≡ wi (2πRT )
D
2 exp

[
e2

i

2RT

]
f (r, ei) , (8)

f eq
i ≡ wi (2πRT )

D
2 exp

[
e2

i

2RT

]
f eq (u, ei) ,

(9)

= ρwi exp

[
−

(
u2 − 2ei • u

)
2RT

]
, (10)

≈ ρwi

[
1 +

ei • u
RT

+
(ei • u)2

2 (RT )2
− u2

2RT

]
;

(11)

and wi are the weight coefficients.
The discrete velocities ei and the weight coef-

ficients wi are determined so as to recover the
Navier-Stokes equation from the LBM in the long-
wage-length and low-frequency limit. Therefore,
the necessary conditions imposed on ei and wi are
as follows: 18)∑

i

wi = 1, (12)

∑
i

wieiαeiβ ∝ δα,β , (13)

∑
i

wieiαeiβeiγeiδ (14)

∝ (δα,βδγ,δ + δα,γδβ,δ + δα,δδβ,γ) .

For the two-dimensional problem, the nine-
velocity model (D2Q9):

ei =


(0, 0), (i = 0)
(±1, 0)c, (0,±1)c, (i = 1, ..., 4)
(±1,±1)c, (i = 5, ..., 8)

(15)

wi =


4/9, (i = 0)
1/9, (i = 1, ..., 4)
1/36, (i = 5, ..., 8)

(16)

is frequently used.
For the three-dimensional problem, several ve-

locity models have been proposed, including the
fifteen-velocity model (D3Q15), the nineteen-
velocity model (D3Q19), and the twenty-seven-
velocity model (D3Q27). 19) We will use the

D3Q15 model in a latter section, where ei and wi

are given by

ei =


(0, 0, 0), (i = 0)
(±1, 0, 0)c, (0,±1, 0)c,

(0, 0,±1)c, (i = 1, .., 6)
(±1,±1,±1)c, (i = 7, ..., 14)

(17)

wi =


2/9, (i = 0)
1/9, (i = 1, .., 6)
1/72, (i = 7, ..., 14).

(18)

In Eqs. (15,17), c is defined by

c ≡
√

3RT . (19)

We can easily prove that the following rela-
tions are satisfied for every pair of ei and wi in
Eqs.(15,16) and Eqs.(17,18):∑

i

wi = 1, (20)

∑
i

wieiαeiβ =
1
3
c2δα,β , (21)

∑
i

wieiαeiβeiγeiδ (22)

=
1
9
c4 (δα,βδγ,δ + δα,γδβ,δ + δα,δδβ,γ) .

Thus, we have confirmed that these pairs of ei and
wi obey the condition of Eqs.(12,13,14).

We require that the Boltzmann equation dis-
cretized with respect to the velocity coordinate,
Eq.(7), satisfies conservation of mass and momen-
tum at each spatial point:∑

i

fi =
∑

i

f eq
i = ρ, (23)∑

i

eifi =
∑

i

eif
eq
i = ρu. (24)

We have used Eqs.(11,20,21) to derive the sum
rules for f eq

i in Eqs.(23,24). Recently, the Boltz-
mann equation discretized with respect to the ve-
locity coordinate has been solved directly by a fi-
nite difference method. 20)

In the next step, we perform the discretization
of Eq.(7) with respect to the spatial and time co-
ordinates. Let us rewrite Eq.(7) as follows:

∂fi

∂t
+ ei • ∂

∂r
fi = −1

τ
(fi − f eq

i ) − Fi, (25)

Fi ≡ − f • (ei − u)
RT

f eq
i . (26)
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Integrating both side of Eq.(25) from t to t + δt,
the left-hand side is reduced to

t+δt∫
t

(
∂fi

∂t
+ e • ∂

∂r
fi

)
dt

= fi (x + eiδt, t + δt) − fi (x, t) ,

(27)

and the right-hand side becomes
t+δt∫
t

(
−1

τ
(fi − f eq

i ) − Fi

)
dt

=
δt

2

[
−1

τ
(fi − f eq

i ) − Fi

]∣∣∣∣
t+δt

(28)

+
δt

2

[
−1

τ
(fi − f eq

i ) − Fi

]∣∣∣∣
t

+ O(δ3
t )

in the second order approximation with respect to
δt. We have used the trapezoidal rule to derive
Eq.(28) and then obtain

fi (x + eiδt, t + δt) − fi (x, t)

=
δt

2

[
−1

τ
(fi − f eq

i ) − Fi

]∣∣∣∣
t+δt

(29)

+
δt

2

[
−1

τ
(fi − f eq

i ) − Fi

]∣∣∣∣
t

+ O(δ3
t ).

To translate Eq.(29) into the explicit form, we
introduce f̃i defined by

f̃i ≡ fi +
δt

2τ
(fi − f eq

i ) +
δt

2
Fi. (30)

Using f̃i, Eq.(29) is expressed as

f̃i (x + eiδt, t + δt) − f̃i (x, t)

= δt

[
−1

τ
(fi − f eq

i ) − Fi

]∣∣∣∣
t

(31)

= − δt

τ + 0.5δt

(
f̃i − f eq

i

)
− τδt

τ + 0.5δt
Fi.

(32)

Introducing the dimensionless relaxation time τ̃

through

τ̃ =
τ

δt
+ 0.5, (33)

Eq.(32) becomes

f̃i (x + eiδt, t + δt) − f̃i (x, t)

= −1
τ̃

(
f̃i − f eq

i

)
+

(τ̃ − 0.5)
τ̃

δt
f • (ei − u)

RT
f eq

i .

(34)

Through the use of Eqs.(20,21,23,24,26,34), we
confirm that f̃i satisfies the following relations:

∑
i

f̃i =
∑

i

fi =
∑

i

f eq
i = ρ, (35)

∑
i

eif̃i =
∑

eif +
δt

2

∑
i

eiFi

=
∑

eif
eq
i +

δt

2

∑
i

eiFi = ρu− δt

2
ρf . (36)

The lattice Boltzmann method with an external
force f is composed of Eqs.(34,35,36) and Eq.(11).
From the definition of τ̃ , Eq.(33), we find that τ̃

must satisfy the constraint τ̃ > 0.5.

Prior to the works of He et al.10, 11, 13) , the LBM
with an external force had been proposed based on
empirical studies, and recently a few papers on this
subject have been published. 21, 22) However, as we
have examined in this section, the LBM with an
external force can be derived consistently from the
continuous Boltzmann equation in the deductive
method.

2.2 Application of LBM to porous media

The LBM derived in Sec.2.1 takes the density
and the velocity as independent variables. To sim-
ulate fluid flow in porous media, we utilize an LBM
for incompressible fluid,23) in which pressure and
velocity are independent variables. This LBM is
convenient for confirming the conservation of flow
late, which, for an incompressible fluid, must be
constant over a porous media. The LBM taking
the velocity u and the pressure p as independent
variables is:

fi (x + eiδt, t + δt) − fi (x, t)

= −1
τ

(fi − f eq
i ) − τ − 0.5

τ
δtFi,

(37)

where we have expressed the dimensionless relax-
ation time introduced in Eq.(33) by τ . The local
equilibrium distribution function f eq

i and the ex-
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ternal force term Fi are:

f eq
i = wi

[
p̃ +

ei • u
RT

+
(ei • u)2

2 (RT )2
− u2

2RT

]
,

(38)

Fi = − f • (ei − u)
RT

f eq
i , (39)

p̃ =
1

c2
sρ0

p =
∑

i

fi, (40)

u =
∑

i

eifi + 0.5fδt, (41)

where p is the pressure, p̃ is the dimensionless pres-
sure, cs is the sound velocity, and ρ0 is the density
of the incompressible fluid.

Using the Chapman-Enskog expansion, 24) we
can derive the macroscopic hydrodynamic equa-
tions from the LBM for an incompressible fluid in
the region of low Knudsen number and low Mach
number:23)

1
c2
sρ0

∂p

∂t
+ ∇ • u = 0, (42)

∂u
∂t

+ u • ∇u = − 1
ρ0

∇p + ν∇2u + f . (43)

In all of the velocity models (D2Q9, D3Q15,
D3Q19, D3Q27) mentioned in Sec.2.1, the kine-
matic viscosity ν and the sound velocity cs are
given by

ν =
2τ − 1

6
c2δt ; cs =

c√
3
. (44)

For the case in which the external force f is con-
servative, the external force is given using the po-
tential Ω:

f = −∇Ω. (45)

Then, Eq.(43) becomes

∂u
∂t

+ u •∇u = − 1
ρ0

∇ (p + ρ0Ω) + ν∇2u. (46)

Equations (43,46) indicate that for the fluid flow
generated by a constant pressure gradient ∇p, such
as the Poiseuille flow, the fluid velocity u is the
same as that driven by the following constant ex-
ternal force f :

f = − 1
ρ0

∇p = −c2
s∇p̃ = −c2

3
∇p̃. (47)

Permeability, the fundamental physical quantity
of porous media, is defined using Darcy’s law:6)

〈u〉 = −K

µ
(∇p − ρ0f) , (48)

where u is the fluid velocity, 〈· · · 〉 is the average
over the porous media, ∇p is the pressure gradi-
ent, ρ0f is the external force operating on the unit
volume of the fluid, and µ is the viscosity related
to the kinematic viscosity ν through ν = µ/ρ0.

As we will see in the next section, the pressure
in porous media shows a complex position depen-
dence and its gradient is not constant. Neverthe-
less, Darcy’s law as given in Eq.(48) indicates that
the averaged fluid velocity generated by the av-
eraged pressure gradient ∇p is the same as that
derived using the constant external force f defined
in Eq.(47). We will verify the identity between
the effect of the pressure gradient and that of the
external force stated in the Darcy’s law through
calculations of permeability in Sec.3.

For the purpose of numerical calculations in the
next section, it is convenient to introduce the di-
mensionless permeability Ktpl, which is related to
the permeability K for porous media having the
shape of a cube with side length Lc:

Ktpl =
1
L2

c

K =
3ũ2

Re∆p̃
, (49)

where the dimensionless velocity ũ, the Reynolds
number Re, and the dimensionless pressure differ-
ence ∆p̃ are defined by

ũ =
u

c
, Re =

uLc

ν
, ∆p̃ = Lc × |∇p̃| . (50)

Hereafter, we use the lattice unit defined through
c = δt = 1.

3. Flow analysis in porous media

In this section, we apply the LBM developed
in Sec. 2 to three-dimensional porous structures
of Nafion polymer membranes. The structures of
Nafion constructed as a result of a dissipative par-
ticle dynamics simulation 8) are shown in Fig. 1
for three values of water content, 10%, 20%, and
30%. Polymer molecules of Nafion 117 occupy gray

R&D Review of Toyota CRDL Vol.38 No.1
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regions in Fig. 1. A cube surrounding the gray re-
gion, whose edge length is 15nm, is divided into a
40 × 40 × 40 voxel lattice, and the vertices of the
voxels are used as the lattice points of the LBM.

(a) (b) (c)

Fig. 1 Structure of Nafion obtained by the DPD
simulation for three values of water content,
10 vol % (a), 20 vol % (b), and 30 vol % (c).

We impose the bounce back boundary condition
(BBBC) 25) at the lattice points occupied by the
polymer molecules. At the inlet and outlet, we pre-
pare a runway having a width of 11 lattice points
along the pressure gradient or the external force.
The inflow and outflow boundary conditions are
constant pressure on the inlet and outlet plane 25)

for the flow generated by the pressure gradient,
and the inlet and the outlet are connected by the
periodic boundary condition for the flow driven by
the external force. In this study, we adopted the
fifteen-velocity model (D3Q15) defined in Sec.2.1.
Hereafter, the flow generated by the pressure gra-
dient and the flow driven by the external force are
designated as FGPG and FDEF, respectively.

The calculated fluid velocity vectors are shown
in Fig. 2. The magnitude of the velocity vector is
represented by color, where the highest velocity is
red and the lowest velocity is blue. Figures 2(a,b,c)
are the results for FGPG, and Figs. 2(a’,b’,c’) are
those for FDEF. In these figures, a quarter of
the region occupied by polymer molecules is re-
moved to display the fluid velocity. In this cal-
culation, the kinematic viscosity ν is 0.05; the
pressure difference between the inlet and outlet,
∆p̃, is 0.5 for FGPG; the magnitude of the exter-
nal force for FDEF is estimated from the relation:
f̃ = 3Lf = ∆p̃, where L(= 62) is the number of
lattice points along the flow direction. From these
figures, we can see that the result for FGPG and
that for FDEF are in good agreement.

Figure 3 shows the calculated pressure distri-

(a)          10% (c)          30%(b)          20%

(c’)          30%(b’)          20%(a’)          10%

Fig. 2 Calculated velocity vectors in Nafion. The
magnitude of the velocity vector is repre-
sented by color, where the largest veloc-
ity is red and the lowest velocity is blue.
Results are compared for the flow gener-
ated by the pressure gradient (a,b,c) and the
flow driven by the external force (a’,b’,c’).
ν = 0.05, ∆p̃ = f̃ = 0.05.

bution in the porous media for FGPG, which is
averaged on the plane perpendicular to the flow di-
rection. The kinematic viscosity ν is 0.05 and the
pressure difference between the inlet and outlet,
∆p̃, is 0.5. From this figure, we find that: (1) al-
most all of the pressure change (the pressure-loss)
occurs inside the porous media; (2) the pressure
can be considered as constant at the runway; (3)
the pressure distribution shows a complex change
along the flow direction inside the porous media.

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0 10 20 30 40 50 60
Distance from the inlet

10%
20%
30%

Fig. 3 Calculated pressure distribution averaged on
the plane perpendicular to the flow direction
in Nafion for three values of water content.
ν = 0.05, ∆p̃ = 0.05.

Figure 4 shows the velocity distribution aver-
aged on the plane perpendicular to the flow di-
rection. In this figure, results are compared for
FGPG (a) and FDEF (b). Parameters of the flow
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are as follows: ν = 0.05 in both Fig. 4(a) and
Fig. 4(b); ∆p̃ = 0.5 in Fig. 4(a) where ∆p̃ is the
difference in pressure between the inlet and the
outlet; f̃ = 3Lf = ∆p̃ in Fig. 4(b). Figure 4 shows
that the result for FGPG is in good agreement
with that for FDEF and the average flow velocity
is constant in the region between the inlet and the
outlet. The constant velocity indicates conserva-
tion of flow rate, and the LBM satisfies one of the
necessary constraints on the incompressible flow.

0

1

2

3

4

5

6

0 10 20 30 40 50 60
0

1

2

3

4

5

6

0 10 20 30 40 50 60

(a) (b)×10-3 ×10-3

u~ u~

Distance from the inlet Distance from the inlet

10%
20%
30%

10%
20%
30%

Fig. 4 Calculated velocity distribution averaged on
the plane perpendicular to the flow direc-
tion. Results are compared for the flow
generated by the pressure gradient (a) and
the flow driven by the external force (b).
ν = 0.05, ∆p̃ = f̃ = 0.5.

Using the calculated velocity ũ, we can estimate
the permeability from Eq.(49). Figures 5(a) and
5(b) show the calculation results for the dimen-
sionless permeability Ktpl. Figure 5(a) shows the
dependence of Ktpl on the pressure difference be-
tween the inlet and the outlet. Figure 5(b) shows
the dependence of Ktpl on the magnitude of the
external force. In this figure, the abscissa f̃ is de-
fined through the relation: f̃ = 3Lf(= ∆p̃). In
these figures, the kinematic viscosity is fixed at
ν = 0.1. Two results for FGPG and FDEF are
in good agreement. The permeability must be in-
dependent of the pressure gradient or the external
force used in the calculation thereof, because, ac-
cording to Darcy’s law, the permeability is an in-
trinsic quantity of each porous media . As shown
in Fig. 5(a) and Fig. 5(b), the LBM produces the
correct result for this requirement for the calcu-
lated permeability.

Changing the magnitude of the kinematic viscos-
ity, we have calculated the dimensionless perme-
ability Ktpl, and the result is given in Fig. 6. The

0

1

2

3

4

5

6

0.001 0.01 0.1
0

1

2

3

4

5

6

0.001 0.01 0.1

Ktpl Ktpl

∆p~

10%
20%
30%

10%
20%
30%

f~

(a) (b)×10-5 ×10-5

Fig. 5 Dependence of dimensionless permeability
on the pressure gradient and the external
force. Results are compared for the flow
generated by the pressure gradient (a) and
the flow driven by the external force (b).
ν = 0.1.

dimensionless pressure difference ∆p̃ in Fig. 6(a)
and the magnitude of the external force in Fig. 6(b)
are fixed under the relationship: ∆p̃ = f̃ = 0.01.
Here, the results for FGPG in Fig. 6(a) and for
FDEF in Fig. 6(b) are in good agreement, and
the calculated permeability depends strongly on
the kinematic viscosity of the fluid. According to
Darcy’s law, the second item is unphysical, be-
cause the permeability is an intrinsic quality of the
porous media and must be independent of the kine-
matic viscosity of the fluid used in the calculation.

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5
ν ν

Ktpl Ktpl

10%
20%
30%

10%
20%
30%

(a) (b)×10-5 ×10-5

Fig. 6 Dependence of dimensionless permeability
on the fluid viscosity. Results are compared
for the flow generated by the pressure gradi-
ent (a) and the flow driven by the external
force (b). ∆p̃ = f̃ = 0.01.

The problem wherein the permeability varies
with the fluid viscosity has been investigated by
Ferréol et al. 26) , and has been interpreted to orig-
inate from insufficient resolution of the underling
lattice of the LBM. In order to confirm this inter-
pretation, we increased the resolution by preparing
a fine grid, in which each gray region in Fig. 1 is
divided into an 80× 80× 80 voxel lattice, and cal-
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culated the permeability using the fine grid. The
result is shown in Fig. 7. We understand from
this figure that the viscosity dependence decreases
with the increase in the grid resolution, and the
interpretation mentioned above is confirmed. In
addition, Fig. 7 indicates that the dependence of
the permeability on the grid resolution decreases
as the viscosity decreases.

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5

40x40x40
80x80x80

ν

(a) 10%x10-5

0

2

4

6

8

10
40x40x40
80x80x80

0 0.1 0.2 0.3 0.4 0.5
ν

(b) 20%x10-5

0

2

4

6

8

10
40x40x40
80x80x80

0 0.1 0.2 0.3 0.4 0.5
ν

(c) 30%x10-5

Ktpl

Ktpl

Ktpl

Fig. 7 Dependence of dimensionless permeability
on the fluid viscosity and the grid resolu-
tion. The water content of Nafion is 10% for
(a), 20% for (b), 30% for (c). ∆p̃ = 0.01.

4. Conclusions

We have developed the LBM with an external
force for incompressible fluid, in which the inde-
pendent variables are pressure and velocity. Us-
ing this LBM, we can impose the periodic bound-
ary condition on the inlet and outlet of the flow

driven by the external force. This is an advan-
tage of the LBM with an external force, because
we can easily code the periodic boundary condi-
tion to be applicable to any velocity model, while
the fluid mechanical boundary condition must be
prepared for each velocity model. In addition, we
have performed simulations of flow through three-
dimensional porous structures of Nafion polymer
membranes using two kinds of LBM, i.e. LBM
with and without an external force. The two LBMs
produce permeabilities that are in good agreement
with each other, and the LBM is confirmed to re-
produce Darcy’s law.

References

1) Chen, S. and Doolen, G.D.: Annu. Rev. Fluid
Mech., 30(1998), 329

2) Succi, S.: The Lattice Boltzmann Equation for
Fluid Dynamics and Beyond, (2001), Oxford Uni-
versity Press

3) Rothman, D.H. and Zaleski, S.: Rev. Mod. Phys.,
66(1994), 1417

4) Buckles, J.J., et al.: Los Alamos Science,
22(1994), 113

5) Auzerais, F.M., et al.: Geophys. Res. Lett.,
23(1996), 705

6) See for example,
Bear, J.: Dynamics of Fluids in Porous Media,
(1988), Dover Publications;
Sahimi, M.: Rev. Mod. Phys., 65(1993), 1393

7) Frenkel, D. and Smit, B.: Understanding Molecu-
lar Simulation, (2002), 465, Academic Press

8) Yamamoto, S. and Hyodo, S.: Kobunshi-Gakkai
Yokoshu (in Japanese), 51-3 (2002), 637, Jpn. Soc.
Polymer Sci.

9) McNamara, G.R. and Zanetti, G.: Phys. Rev.
Lett., 61(1988), 2332

10) He, X. and Luo, L.-S.: Phys. Rev., E55(1997),
R6333

11) He, X. and Luo, L.-S.: Phys. Rev., E56 (1997),
6811

12) Bhatnagar, P.L., et al.: Phys. Rev., 94(1954), 511
13) He, X., et al.: Phys. Rev., E57(1998), R13
14) Martys, N.S., et al.: Phys. Rev., E58(1998), 6855
15) Sterling, J.D. and Chen, S.: J. Compt. Phys.,

123(1996), 196
16) Abe, T.: J. Compt. Phys., 131(1997), 241
17) Shan, X. and He, X.: Phys. Rev. Lett., 80(1998),

65
18) Wolf-Gladrow, D.A.: Lattice-Gas Cellular Au-

tomata and Lattice Boltzmann Models An Intro-
duction, (2000), Springer-Verlag, New York

R&D Review of Toyota CRDL Vol.38 No.1



25

19) Qian, Y.H., et al.: Europhys. Lett. 17(1992), 479
20) Mei, R.W. and Shyy, W.: J. Comput. Phys.,

143(1998), 426
21) Buick, J.M. and Created, C.A.: Phys. Rev.,

E61(2000), 5307
22) Guo, Z., et al.: Phys. Rev., E65(2002), 046308
23) He, X. and Luo, L.-S.: J. Stat. Phys., 88(1997),

927
24) See for example, Chapman, S.and Cowling, T.G.:

The Mathematical Theory of Non-Uniform Gases,
Third Edition, (1970), Chap.7, Cambridge Uni-
versity Press, or, Cercignani, C.: The Boltzmann
Equation and Its Applications, (1988), Chap.V.,
Springer-Verlag, New York

25) Zou, Q. and He, X.: Phys. Fluids, 9(1997), 1591
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