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Abstract

Computational observation of effective
information of materials related to microscopic
structures and macroscopic properties requires
that the quantum mechanical picture be described
systematically and consistently with classical
physical pictures in advance.  This problem is
related to what is called the problem of
measurement for a quantum mechanical system,

which has been a long-standing problem since the
beginnings of quantum mechanics.  Conclusion of
this problem has not yet been established as
common understandings.  Brief explanations are
presented here in relating matters in multiscale
simulation of materials as well as a recently
reported extrinsic method by which to avoid such
problems.
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In order to realize the process of hierarchical
material simulation combined with quantum
mechanical scales, we have to consider the
connection of quantum and classical subsystems
within a region of interest.  A quantum system is
basically described by wavefunction and shows what
is called "long-range correlation" originating from
the coherent character of wavefunction.1) A classical
system, on the other hand, can be described without
information concerning the wavefunction and shows
no coherency in the sense of the quantum theory.
We must connect these two different types of
subsystems consistently.  It is well-known that the
observation of a quantum mechanical system using a
macroscopic device shows the problem of
measurement for a quantum mechanical system,
which is a long-standing problem in quantum
theory.2) This problem introduces several types of
famous paradoxes in the fundamental theory of
quantum mechanics.3, 4) A typical paradox is shown
in Fig. 1.  Such paradoxes do not appear without any
measurement by macroscopic apparatus.  In other
words, the interaction of a macroscopic apparatus
and a quantum system give rise to such paradoxes.
The same problem also appears in a quantum
composite system having a macroscopically large
scale.5) The appearance of this serious and
complicated problem originates from the connection
of quantum and classical systems.

The fundamental characteristics of macroscopic
systems are that the system has large degree of
freedom and irreversibility.  If we describe a system
having a large degree of freedom by wavefunction,
we can find many states constructed by
wavefunctions with different phases.  Each
wavefunction is coherent in each state, but the
magnitudes at arbitral spatial position are
incoherently correlated.  The locality of the spatial
correlation is therefore obviously dependent on the
degree of freedom for the objective system.  If the
spatial correlation is local in the description by
wavefunctions, a classical description is expected to
apply for this system.  On the other hand, usually
quantum systems can be described reversibly
because there are definable contours of motions for
constructing subsystems.  This situation is
equivalent to a classical system with a few amount

of degree of freedom.  For example, the equation of
motion is completely describable for a classical
system constructed by a few point particles.
Contrary of this situation, a system having an
extremely large number of components cannot be
described reversibly.  The term long-range time-
scale has meaning in a system of irreversibility,
because that the correlation of motion on a short-
range time-scale will be smeared out for motions in
a system having a large degree of freedom.  The
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Fig. 1 Schematic view of a typical paradox in the
problem of measurement for quantum
mechanical systems.  This is Bohm’s version of
the Einstein-Podolsky-Rosen Paradox.  The
entire system is constructed by two subsystems, 1
and 2.  Each subsystem has two eigenstates, α
and β.  The initial state of this system was set as
the full contact condition.  The wave function for
this initial state | 0   is a familiar form in quantum
mechanics, as shown at the top of the figure.
If the result of an observation, applied at several
times after the beginning of separation into two
subsystems, was that subsystem 1 was in the α
state, we can know automatically that subsystem
2 is in the β state.  Observation by macroscopic
apparatus corresponds to this microscopic system
interacting with a system of large degree of
freedom.  A possible explanation for this result is
that subsystem 1 has been in the α state and
subsystem 2 has been in the β state since the time
at the beginning of separation.  This means that
subsystem 2 has already been defined as being in
the β state since the beginning of separation
without any interaction with external systems.
However, this is inconsistent with the initial
condition, and therefore concludes a paradox.
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memories of contours of motion disappear after
smearing, and the system cannot return to exact past
states reversibly.  A statistic treatment should be
applied to such a system for analysis.  Although this
is also true for a quantum system having a large
degree of freedom, conventional quantum theory
does not include irreversibility.  Irreversibility is an
essential characteristic of a macroscopically large
system.  Interaction between a classical macroscopic
system having a large degree of freedom and a
quantum system having a small degree of freedom
should be described by different theories for what
are essentially different physical situations.  Such
complexities exist in problems concerning the
interaction of a macroscopic apparatus and a
quantum system, and also in a quantum composite
system having a macroscopically large scale.

Recently, it was reported that classically definable
characteristics of a macroscopic quantum
mechanical subsystem can be safely (without any
paradox) reproduced by averaging the states on a
corresponding subsystem over the generalized
density matrix or the statistical operator.5) The
quantum mechanical coherency is removed by this
averaging process.  In other words, the averaging in
a density matrix representation can reproduce a
classically definable decoherent state.  The condition
to satisfy decoherency is such that the subsystem
contains a statistically large degree of freedom.
Although the density matrix representation is
familiar in quantum chemistry,6) less consideration
has been given in relation to the description of
quantum mechanical composite systems.

When the total wavefuntion, |ψT , of a focused
system is expanded in a linear combination of given
basis functions, {|χi };

· · · · · · · · · · · · · · · · · · · · · (1)

the density matrix, ρT, can be expressed as
ρT =  | ΨT    ΨT |

· · · · · · · · · · · · · · · (2)

Using this expression, Eq.(2), the expectation value
of any kind of observable, O, can be obtained as

= AT,  i AT,  j∑
j

 | χi〉〈 χj |.∑
i

|ΨT〉  = AT,  i∑
i

| χi〉 ,

〈

〈

· · · · · · · (3)

Here Tr(T){X} is the trace operation, which means
the summation over diagonal elements of the given
observable X in matrix form.  This operation
averages out the quantum mechanical uncertainty
parts in the full expression of the system, i.e., the
parts describing the quantum mechanical
correlations.  If we can take the basis functions,
which is diagonalizing the state of the total system,
the coefficients in Eqs.(1)-(3), {Ai}, can be replaced
by unity.  These are familiar expressions in the
fundamental quantum mechanics.7) Machida chose a
composite system consisting of N subsystems having
arbitrary spin to investigate a generalized Einstein-
Podolsky-Rosen (EPR) problem,3) and Machida and
Miyoshi considered the results of the measurement
of various components of spin in the kth subsystem
at an arbitrary time after that at an initial state.5) If
the total wavefuntion is expressed by a linear
combination of the products of wavefunctions of
each subsystem, s, |µ, is ;

· · (4)

instead of Eq.(1), the density matrix of this entire
system is

ρT =  | ΨT    ΨT |

· · · · · · (5)

Here, the abbreviation, p xq, introduced by Motoyoshi
et al.,8) denotes a set of xp, xp+1,…, xq-1, xq, where p
and q are integers.  The states | µ, ik are given by the
simultaneous eigenstates of the eigenvalue equations
for the spin states in kth subsystem and µ denotes
spatial components of the spin, (x, y, z).  The symbol
⊗ indicates the matrix product (all of the
combinations of elements in each matrix should be
counted individually in this operation).  Taking the
partial trace of ρT over the kth subsystem gives

⊗ | µ,  i2〉〈 µ,  j2 | ⊗  . . . ⊗ | µ,  iN〉〈 µ,  jN |.

= ∑
1j N

1n N

C (1iN)∑
1i N

1n N

C *(1jN)| µ,  i1〉〈  µ,  j1 |

| ψT〉  = C ( 1iN ) | ∑
1i N

1n N

 µ,  i1〉 | µ,  i2〉  ... | µ,  iN〉 ,

〈

=  AT,  k
 2 AT,  k AT,  j ∑

j

〈χj | O |∑
k

χk 〉 .

=  AT,  k
2〈  χk  | (ρT O) | χk 〉∑

k

 O  = Tr(T) ρT O
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· · (6)

Adopting this operation over all subsystems except
for the kth subsystem,

· · · · · · · · · · · · · · · · · · (7)
is obtained as the density matrix of the kth
subsystem.  Here, ρk(µ) is expressed explicitly by
the basis functions of the kth subsystem only, and
the influences of the other subsystems are implicitly
expressed in the coefficients, C(1iN) C*(1ik-1, jk,

k+1iN).  There are no remaining coherent terms like
cross terms of kth and k’ th ( k’≠ k ) basis functions.
The result of Eq.(7) does not claim that the quantum
mechanical pure state of the kth subsystem
represents the entire system in the measurement
process.  The state in the last step in Fig. 1, for
example, should be considered as one of the possible
results after the measurement, and the states in all
the steps should be understood in the expression of
mixed states.  This means that the paradox, like EPR
type paradox, is avoidable in the measurement of a
quantum mechanical subsystem, which is interacting
with its environment in a composite entire system.
Therefore, averaging the states on environment
subsystems over the density matrix representation
can be considered to reproduce safely (without any
paradox) corresponding classically definable
characteristics (the results of measurement) of an
entire system.  Equation (7) is still a general and
conceptual formula, and can not be applied to the
explicit calculation in the present form.  It is
necessary that future investigations should be
continuously progressed.  However, the results

= C (1iN)∑
jk

nk

∑
1i N

1n N

C* (1jk -1,jk ,k+1jN)| µ,  ik 〉〈  µ,  jk |

ρk(µ) = Tr(1,2,...,k -1,k+1,...,N) ρT (µ)

⊗  | µ,  ik+1〉〈 µ,  jk+1 | ⊗  . . . ⊗  | µ,  iN〉〈 µ,  jN |.

⊗  | µ,  i2〉〈 µ,  j2 | ⊗  . . . ⊗  | µ,  ik -1〉〈 µ,  jk -1 | 

= C (1iN)∑
1j N ≠ kj N

1n N

∑
1i N

1n N

C * (1jk -1,ik ,k+1jN) | µ,  i1〉〈 µ,  j1|

= ρ1,2,...,k -1, k+1,...,N (µ)

Tr(T) ρT (µ)
introduced by Eq. (7) are valuable for the process of
hierarchical material simulation combining with
quantum mechanical scales.

When we divide a system into an objective
microscopic subsystem and an environmental
subsystem, the same procedure in the problem of a
quantum composite system can be applied.
Although explicit formulation for averaged states of
a divided subsystem over a density matrix
representation has not yet been derived, it can be
correctly expected that the subsystem with averaged
states is safely reproducible by means of classical
expressions.  Therefore, it is expected that the
structure on a subsystem can also be defined by a
classical description, which is suitable for noticed
phenomena and is independent of quantum
mechanical descriptions.  The electronic structure is
transformed into the electron distribution describable
by the density matrix.  Once the electrostatic and/or
the electrodynamic properties on the corresponding
subsystem are defined within the mesoscopic
environment structure, the electrostatic potential
reproduced by these properties can be added to the
Hamiltonian of the focused microscopic subsystem.
The long-range property of electrostatic potential
requires the effects of environmental mesoscopic
structure to be explicitly considered.  The process of
hierarchical material simulation with quantum
mechanical scales can therefore be implemented
using averaged properties over a density matrix
representation on a meso-scale structural calculation.

On a macroscopic scale that is sufficiently large
compared to the characteristic spatial frequency of
the inhomogeneity, the inhomogeneous structure is
painted over the slowly varying structure (see Fig. 2).
A focused material can be considered as being
nearly homogeneous on such a scale.  However, the
microscopic condition on the scale of a small
molecule is still in the inhomogeneous environment.
A part of the material is influenced by the structural
inhomogeneity varying with the characteristic spatial
frequency.  The restriction condition should be
defined by the macroscopic boundary condition of
the noticed material.  The electronic state on a
microscopic scale, on the other hand, should be
defined within the inhomogeneous environment.
Therefore, the restriction condition and the
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electronic state should be defined individually on
each suitable scale, and the information on each
scale should be transformed between each of them.
In order to realistically perform such a process, we
should define the process for describing the systems
of different spatial frequencies simultaneously.  Such
a process of definition has already been realized by
the multi-grid technique in numerical calculations
for many kinds of differential equations with finite-
size grids.9) Another possible process for
simultaneously describing systems of different
spatial frequencies has been proposed as the
“wavelet” method.10) Although the numerical
calculation technique is already guided by the multi-
grid and/or the wavelet schemes, a serious problem
still remains with the cooperation of macroscopic
and microscopic definitions.  This problem usually
appears in connecting quantum and classical
subsystems, as was discussed above.  It was seen
that the process of hierarchical material simulation
combined with quantum mechanical scales can be
implemented using averaged properties over a
density matrix representation on a meso-scale

structural calculation.  
The problem of measurement for a quantum

mechanical system discussed here is a well-known
long-standing problem in quantum theory.  Most
chemists and physicists in the material science field,
however, have paid little attention to this problem.
A part of the reason of this state seems to be that this
problem has been a rather philosophical problem
without any practical meaning for long time.  Main
reason, however, can be guessed as that the quantum
mechanical description gives sufficiently accurate
predictions that are practical for several types of
problem in material science.  The consideration of
such a complicated serious philosophical problem
seems impractical.  For quantum mechanical
systems, the theory has given accurate results for
many types of phenomena and no bankruptcy of the
theory has been found.  With the advance of material
science in new areas of research, typically nano-
science and nano-technology, hierarchical concepts
for the basis of theoretical treatment have gained
interest.  When considering a quantum mechanical
material system using a hierarchical concept, the
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Fig. 2 Various scales of spatial frequencies of inhomogeneity.  The frequency patterns in wavefunction are very
complicated because a large number of states having different phases exist in each scale of the structures.  Therefore,
for simplicity, the frequency patterns are instead illustrated in the envelope of the wavefunctions.  The same patterns
can be seen in the density distribution.  The explicit structure, shown here, is obtained from a polyelectrolyte-water
nano-composite system reported in another article in the present issue.a)

a) Yamamoto, S. : R&D Rev. of Toyota CRDL, 38-1 (2003), 10



problem of measurement for a quantum mechanical
system must be addressed.  This problem seems
indispensable in new fields of science.  Although a
consensus on the quantum measurement problem
has not yet been well established, it can be possible
to avoid some paradoxical problems from
hierarchical investigations.
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