セピオライトによる各種臭気物質の吸着

杉浦正洽,福本和広,稲垣伸二

Adsorption of Odorous Vapors by Sepiolite

Masahiro Sugiura, Kazuhiro Fukumoto, Shinji Inagaki

要 旨

セピオライトによる相対蒸気圧10⁻⁷~1の各種臭気 物質の吸着を,温度25 ,相対湿度30%の大気中およ び減圧下で調べた。更に,椰子殻活性炭(以下,活性 炭)による吸着と比較した。

研究報告

セピオライトによる大気中臭気物質の吸着量は,相 対蒸気圧10⁻⁵のアンモニア,ピリジン,アセトアルデヒ ドに対して,それぞれ約0.15,0.011,0.0042mmol/gであ り,相対蒸気圧10⁻³のトルエン,スチレンに対して, それぞれ約0.04,0.0045mmol/gであった。その吸着は臭 気物質の親水性と関係し,セピオライト表面の水分子 層を通して吸着される。セピオライトによる減圧下で の臭気物質の吸着量は相対蒸気圧10⁻¹のアンモニア, ピリジン,酢酸エチル,スチレン,ヘキサンに対して,それぞれ約6.0,2.0,1.5,1.0,0.8mmol/gであった。

活性炭による大気中臭気物質の吸着量は,相対蒸気 圧10⁻⁵のピリジン,アセトアルデヒド,アンモニアに対 して,それぞれ0.015,0.011,0.008mmol/gであり,相 対蒸気圧10⁻³のアセトン,トルエン,スチレンに対し て,0.9,0.4,0.06mmol/gであった。しかし,活性炭表面 において,吸着量と臭気物質の親水性との間に密接な 関係は観察されず,相対蒸気圧の関数としてプロット した親水性臭気物質の吸着等温線は同一直線上に乗っ た。活性炭表面での吸着は主に水を吸着してない表面で 起こる。

Abstract

The adsorption of various vapors (adsorbates) having relative vapor pressures of $10^{-7} \sim 1$ by sepiolite and active carbon was studied. Experiments were carried out at 25 in ambient air having 30% relative humidity (RH), or under reduced pressure without air nor water.

The amounts of adsorbates adsorbed on sepiolite were about 0.15, 0.011 and 0.0042mmol/g, for ammonia, pyridine and acetaldehyde, respectively, under a relative vapor pressure (P/P_0) of 10⁻⁵ in ambient air of 30% RH. The adsorbed amounts were about 0.04 and 0.0045mmol/g, for toluene and styrene, respectively, under 10⁻³ P/P_0 . The adsorption is made through the water molecular layer on the sepiolite. The amounts of adsorbates adsorbed on sepiolite under reduced pressure without air nor water, were about 6.0, 2.0, 1.5, 1.0, and 0.8 mmol/g, for ammonia, pyridine, ethyl acetate, styrene, and hexane, respectively, under $10^{-1} P/P_0$.

On the other hand, the amounts of adsorbates adsorbed on coconut-shell active carbon in the air of 30% RH, were about 0.015, 0.011 and 0.008mmol/g, for pyridine, acetaldehyde, and ammonia, respectively, under 10^{-5} . *P*/*P*₀ and were about 0.9, 0.4 and 0.06mmol/g, for acetone, toluene, and styrene, respectively, under 10^{-3} *P*/*P*₀. On the carbon surface, however, a close relation was not observed between the amount of adsorption and the hydrophilic property of the adsorbates tested. The plots of adsorbed amount of hydrophilic adsorbates against *P*/*P*₀, coincide with the common line extrapolated from those of these other adsorbates. The adsorption on the carbon takes place mainly on its water-free naked surface.

1.まえがき

セピオライトはその結晶構造¹⁾にトンネルを持つ含 水珪酸マグネシウム質粘土鉱物であり,粘土鉱物の中で 最も美しい造形をしているものの一つである(Photo 1)。 その構造からガス吸着に関する研究が多い²⁻⁷⁾。しか し,これらの研究のほとんどは,空気や水蒸気のない 単純な系のもとでなされてきた。

今日,セピオライトはヨーロッパではキャットリッ タ(猫のトイレ)や煙草のフィルタなど⁸⁾に,日本で は最近住宅^{9,10)}や自動車¹¹⁻¹³⁾の脱臭機能付内装材 の脱臭材の一つとして利用されるようになった。この ようにセピオライトは種々のガスに対する有用な脱臭 材として使われるようになったが,通常大気中におい て水蒸気や他のガスを吸着しているため,脱臭材とし て利用するためには,種々の性質の異なる臭気物質, 例えばアンモニア^{10,14,15)},トリメチルアミン¹⁰⁾, アセトアルデヒド¹⁶⁾,硫化水素,メチルメルカプタ ン¹⁷⁾,ピリジン,トルエン,スチレン,アセトンな どに対する大気中におけるセピオライトの吸着特性を 把握することが重要である。

本研究においては,温度25,相対湿度30%の大気

Tetrahedral sheet : SiO₂ layer Octahedral sheet : MgO layer

Photo 1 Structural model of sepiolite.

中におけるセピオライトによるアンモニア,アセトア ルデヒド,ピリジン,トルエン,スチレン,アセトン に対する吸着量と減圧下におけるアンモニア,ピリジ ン,酢酸エチル,スチレン,ヘキサンに対する吸着量 を測定し,"大気中におけるセピオライト"によるガ ス吸着と"減圧下におけるセピオライト"によるガス 吸着の相違を明らかにし,また,セピオライトと椰子 殻活性炭のガス吸着特性を比較し¹⁸⁾,その結果を脱 臭材としてのセピオライト利用⁹⁻¹³⁾の基礎とするこ とにある。

2 . 実験方法

2.1 実験材料

セピオライトは, Table 1に示す化学組成のトルコ 産セピオライトで,その粒子の大きさが0.3~1mmの 範囲の顆粒状のものと,44µm以下の粉末状のものを使 用した。椰子殻活性炭(キャタラー工業,キントール[®], 以下,活性炭)は,セピオライトと粒子の大きさが同 じものを使用した。約28%アンモニア水溶液,アセト アルデヒド,アセトン,酢酸エチル,スチレン,ヘキ サン,ピリジン,トルエンは試薬をそのまま使用し た。気体のアンモニアとエチレンはガスボンベに充填 されたもの,窒素は液体窒素を気化したものを使用し た。

2.2 比表面積の測定

10⁻³Paの減圧下,200 で12時間乾燥した試料の比 表面積を窒素吸着によるBET法により測定した。装置 は2100-01型アキュソープ(島津製作所)を使用した。

2.3 大気中における臭気物質吸着量の測定

臭気物質の吸着量の測定は, Fig. 1に示す装置を使用した。臭気袋はポリエチレンテレフタレートを内側 にしアルミニウムホイルを外側にして積層した 5ℓ 容 量の袋を使用した。気化器は一方の端にシリコンチュ ーブを備え,周囲を電気抵抗炉に囲まれたガラス管 (6mmφ×200mm)で構成した。液体の臭気物質を吸い 上げたマイクロシリンジの針先をシリコンチューブに

Table 1 Chemical composition of sepiolite (wt%).

SiO ₂	MgO	Al ₂ O ₃	Fe ₂ O ₃	CaO	K ₂ O	Sepiolite	Dolomite	Organic
62.5	25.0	1.30	0.31	0.25	0.25	98.3	1.0	0.7

差し込み,所定量の臭気物質(アンモニアの場合は水 溶液)をガラス管内に注入した。流量計とポンプは臭 気物質を含んだ5ℓの空気を臭気袋に満たすのに使用 した。110,3時間電気炉に入れて乾燥したセピオラ イト(約10g)の重量(初期重量,W0(g))を温度25

,相対湿度30%の恒温恒湿機の中に入れ,少なくと も3日間静置する。それは,水分がセピオライトに飽 和吸着するのに3日かかる(水を飽和したときの重 量, W_S)ためである。セピオライトに吸着した水の吸 着量の値, W_A (mmol/g),は分子量をMとすると式(1) で求めることができる。

$$W_A = \frac{W_S - W_0}{W_0 \cdot M} \qquad (1)$$

次に,そのセピオライト(約1g)を臭気袋に入れる。 更に,約28%アンモニア水溶液または他の臭気物質 (1~20µℓ)を相対湿度30%の空気5ℓとともに臭気袋 に入れる。その袋を温度25 の恒温恒湿機の中に5時 間静置する。その時臭気袋の中の空気に含まれる臭気 物質の濃度が見かけ上平衡になっていることをあらか じめ確認しておく。5時間後に臭気袋の中の空気に含 まれた臭気物質の濃度,C(ppm),を次に示す方法で 測定する:アセトアルデヒド,アセトン,ピリジンはガ スクロマトグラフにより,アンモニア,トルエン,スチ レンは北川式ガス検知管により測定する。また,セピオ ライトを入れてない臭気袋の中にセピオライトを入れ た時と同じ量の液体を気化して入れ,同じ方法により それぞれの濃度を測定する。この濃度をそれぞれの臭 気物質に対する実験系の初期濃度,*C*₀(ppm),とする。

セピオライトに吸着した臭気物質の吸着量, W (mmol/g) は式(2)により計算した。

$$W = \frac{n}{W_0} = \frac{P_a \cdot V(C_0 - C)}{R \cdot T \cdot W_0} \times 10^{-3} \cdot (2)$$

n: 臭気物質のミリモル数 [mmol]

- P_a:空気の圧力 [Pa]
- V:空気の体積[m3]
- R : 気体定数, 8.31 [J·mol-1·K-1]
- T : 絶対温度 [K]
- W_0 : セピオライトの重さ [g]

また,活性炭に吸着した臭気物質の吸着量を上で述 べたセピオライトの場合と同じ方法で測定した。

2.4 減圧下における臭気物質吸着量の測定

使用した装置をFig. 2に示す。マイクロバランス系 は試料バスケット,石英ばね,差動トランス,変位 計,および記録計で構成される。石英ばねと差動トラ ンスは一定の温度に保持される。試料バスケットに入 れた試料がガスを吸着すると石英ばねが伸びて差動ト

Fig. 1 Apparatus for adsorption isotherm measurement in ambient air.

Fig. 2 Apparatus for adsorption isotherm measurement under pressure without air nor water.

ランスが作動し,変位計は試料に吸着したガスの量に 相当する変位を指示する。減圧系は真空電離計を備え たパイレックス[®]ガラス管でできた減圧ライン,水銀 マノメータ,拡散ポンプ,および回転ポンプで構成さ れる。拡散ポンプと回転ポンプは減圧ラインの気圧を 10⁻² ~ 10⁻³Paにするために空気を排気するのに用いる。 試料導入系はガス溜めと試料管で構成するが,それら は独立に設けてある。ガス溜めはパイレックス[®]ガラ スでできていて,アンモニアのような常温で気体状の 臭気物質を貯蔵するのに使う。液体セルは–21 ~ 15 の温度範囲に制御した浴の中に置いて液体の臭気物質 を貯蔵する。サーモスタットによりその温度を制御し て,液体の臭気物質の蒸気圧を固定する。その蒸気圧 は水銀マノメータにより読み取る。

25 の下にマイクロバランス系の石英ばねに吊り下 げた試料バスケットの中にセピオライト(顆粒)を置 き,系内の圧力を1.33×10³Paにした。次に,セピオラ イトの重量が一定になるのを確かめた。アンモニアと エチレンのようなガス状の臭気物質はガス溜めに入れ た。コックC₁を開けてこの臭気物質を減圧ラインを介 してマイクロバランス系に導入した。臭気物質の蒸気 圧を段階的にあげた。セピオライトの重量変化が一定 になるのを確かめた後その圧力を読み取った。他方ピ リジン,スチレン,酢酸エチル,ヘキサンのような 液体の臭気物質は液体セルに入れ,そしてコックC,を 開けてこの臭気物質をマイクロバランス系に導入し た。この時,-21~15 の温度範囲に液温を調節する ことにより,その臭気物質の蒸気圧を制御した。そし て臭気物質は相対蒸気圧が0~0.5の範囲において平衡 になるように蒸発させた。これらの臭気物質の蒸気圧 はアントインの式(3)により計算した1%)。

- t:温度[]
- A,B,C:定数

セピオライトに吸着した臭気物質の吸着量, $W_A(\text{mmol}g)$ を,水の場合と同じ式(1)で計算した。25 における 臭気物質の分子断面積 $s(\text{nm}^2)$ を式(4)で計算した²⁰。

M:臭気物質の分子量

d : 臭気物質の密度 [g/cm³]

また0.3~1mmの粒子の活性炭(顆粒)に吸着したア

豊田中央研究所R&Dレビュー Vol.28 No.2 (1993.6)

ンモニアとエチレンの吸着量についても上と同じ方法 で測定した。

25 におけるセピオライトと活性炭のBET表面積 S(m²/g)は式(5)で与えられる²⁰)。

S = s × W_m × 6.022 × 10² ・・・・・・・(5) W_m : BET式における臭気物質の単分子層に相 当する吸着量 [mmol/g]

3.結果と考察

3.1 大気中における吸着等温線

Fig. 3は温度25 ,相対湿度30%の空気中における 臭気物質の平衡濃度の関数として, セピオライトと活 性炭による臭気物質の吸着量を示す。Fig. 4(a)はFig. 3 のうち,セピオライトに関係する吸着等温線をloglogプロットしたもので, それらの傾きはほぼ平行で あるが,大いに散らばっている。相対蒸気圧10-3以下 (200ppm以下)の臭気物質において,その吸着量はア ンモニア,アセトン,ピリジン,アセトアルデヒド, トルエン,スチレンの順に高い。セピオライトの各臭 気物質に対する吸着等温線はほぼ平行であることはセ ピオライト表面の水分子が吸着に重要な役割をしてい ることを示唆している。スチレンに対する吸着等温線 は最も低く、トルエンに対する吸着等温線は二番目に 低い。これらの結果は吸着がセピオライト表面にあら かじめ吸着した水分子の層の上で起こることを示す。 セピオライト表面に吸着した水分子の吸着量は相対湿 度30%の空気に含まれる水蒸気と平衡して6.16mmol/g であった¹⁴⁾。この値は水分子の大きさから判断して 400m²の表面積に相当し,それはセピオライト全表面 に1層または1層以上の水分子層が存在することに相当 する。従って吸着等温線は疎水性の臭気物質が親水性 の臭気物質よりも低い値を与えることを示している。 換言すれば相対湿度30%の空気にさらされたセピオラ イト表面での吸着は水分子層の表面で起こる。大気中 におけるセピオライト表面でのスチレンに対する吸着 等温線 (Fig. 4(a)) は3.2節で示す減圧下でのセピオ ライト表面での吸着等温線 (Fig. 7(a)) より低いところ に位置する。大気中におけるセピオライトの結合水を 除くほとんどの吸着水を減圧下で排気するとスチレン の吸着量を増すことができる。

10ppmのアンモニアを含んだ相対湿度30%の空気中において,40µmの粉末状のセピオライトのアンモニア

Fig. 3 Adsorption isotherms of adsorbates in ambient air of 30% RH at 25 .

吸着量は約0.06mmol/gであった(Fig. 4(a))。一方,0.3 ~1mmの顆粒状のセピオライトにおける吸着量は約 0.02mmol/gであった¹⁴⁾。この吸着量の差はセピオライ トの大きさ,比表面積,そして実験方法の差によるで あろう。セピオライト表面におけるアンモニア吸着量 は大気下と減圧下において,その差は小さいのに対 し,スチレンの吸着量の差はむしろ大きいことが観察 された(Fig. 4(a)とFig. 7(a))。これらの結果は大気中 におけるセピオライト表面での吸着に関する上述の解 釈を支持していると考えられる。この大気中における

Fig. 4 Adsorption isotherms (log-log plots) of adsorbates in ambient air of 30% RH at 25 .

セピオライト表面についての解釈から、アンモニアの 吸着が最も強く生ずることは容易に理解できる。すな わちアンモニアは水分子と強く反応してイオン化し、 このイオン化を通して表面の水と強く結合するからで ある。アンモニウムイオンに対する酸解離指数(pK_a) の値は 9.24(NH₄⁺ + H₂O = H₃O⁺ + NH₃) であり, ピリ ジンに対するpK₂の値は 5.42(C₅H₅NH⁺ + H₂O = H₃O⁺ + C₅H₅N) である¹⁹⁾。これらの値は吸着等温線の順序に 一致する。他方,アセトンとアセトアルデヒドはイ オン化しない。従って混和性のような比較のための基 礎的な指標が必要になる。アセトンとアセトアルデ ヒドはカルボニル基(C=O)を持ち,その酸素が水素 結合を形成して,水分子と完全に混和できるので,ア ンモニアと同様な吸着挙動を持つのであろう。アンモ ニアの溶解度は, 2.7mol/100g - 水であり, トルエンの 溶解度は0.00055mol/100g - 水である²¹⁾。これらの値 は吸着等温線の順序に一致する。スチレンはイオン化 せずまたその水に対する溶解度はほとんど零である22)。 このため,スチレンの吸着等温線は他に比し最も低い ものと理解される。

Fig. 4(b)はFig. 3のうち,活性炭に関してlog-logプロ ットしたものをまとめた吸着等温線である。Fig. 4(b) に示すように,活性炭表面における臭気物質の吸着等 温線はセピオライト表面におけるそれとは違った挙動 を示す。吸着等温線はそれぞれ特徴的な二つの群に分 類される:第一群はアンモニア,アセトアルデヒド, ピリジン,アセトンの吸着等温線からなる。これら吸 着等温線の勾配はほぼ同じで,且つほぼ同一線上にあ る。第二群はトルエン,スチレンで,その特徴は吸着 等温線の勾配が第一群に比し極端に小さいことにあ る。

第一群に関して見れば,同じ群にある臭気物質はあ る一定の相対蒸気圧の下では同じ種類の決まった活性 点に吸着することを意味していると考えられる。第二 群の吸着特性に関して見れば,第二群の吸着等温線の 勾配は第一郡のそれよりもかなり小さいので,且つト ルエンに対する吸着等温線の勾配はスチレンに対する のとほとんど同じであるから,トルエンとスチレンは 同じ種類の活性点に吸着すると考えられる。しかしあ る一定の相対蒸気圧の下では,その吸着量が異なるの で一定量の活性点に吸着する分子の数が異なると考え られる。

豊田中央研究所R&Dレビュー Vol. 28 No. 2 (1993.6)

さて,活性炭表面に吸着した水分子の量は1.33mmol/g で,1分子層として計算すれば87m²/gの表面積に相当 する。この面積は活性炭(Table 2)の全面積(1073m²/g) のちょうど1/12(約8%)であり,全表面積の92%また はそれ以上の面積は水分子に覆われることなくその表 面に残っている。活性炭表面でのアンモニア,ピリジ ン,アセトン,アセトアルデヒドのような種々の親水 性の臭気物質においては,吸着は主に活性炭の水分子 に占有された表面で起こると考えられる。しかし,水 で覆われた表面積は全体の8%に過ぎず,このため, 活性炭ではアンモニアなど親水性気体の吸着が小さい と考えられる。トルエンやスチレンのような疎水性の 臭気物質の吸着は主に水分子で占有されていない活性 炭表面で起こり,このためその吸着量は比較的良いと 考えられる (Fig. 4(b))。またトルエン, スチレンの 吸着等温線の勾配が同じになるのは,活性炭そのもの の表面での吸着特性がほぼ同じためと考えられる。一 般的な傾向として,臭気物質の吸着量(Fig.3)はそれ らの平衡濃度の増加とともに増える。従って吸着挙動 はラングミュア型ではなくて, ヘンリー型, フロイン ドリッヒ型,フルムキン-チョムキン型であると推定 される。アセトンを除いて相対蒸気圧10⁻⁷~10⁻² (200ppm 以下)の臭気物質に対してその吸着量をlog-log座標に プロットすると直線になる。これからFig.4に対して 最も適応する関数はフロインドリッヒ型であると考え られる。このことは,同じ表面積の上で比較すると活 性炭表面でのこれら臭気物質の吸着がセピオライト表 面での吸着よりも弱いことと一致している。

Table 2 BET surface areas of adsorbents for various adsorbates at 25 and -196

Adsorbate	Adsorbent	Temperature	BET surface area	
		(°C)	(m²/g)	
Ammonia	Sepiolite	25	246	
	Carbon		254	
Pyridine	Sepiolite	25	290	
Styrene	Sepiolite	25	230	
Ethyl acetate	Sepiolite	25	249	
Hexane	Sepiolite	25	199	
Ethylene	Sepiolite	25	92	
	Carbon		393	
Nitrogen	Sepiolite	-196	284	
	Carbon		1073	

3.2 減圧下における吸着等温線

Fig. 5は減圧下での臭気物質の相対蒸気圧 (P/P₀)の 関数としてプロットしたセピオライトと活性炭表面に おけるアンモニアとエチレンの吸着量を示す。又, Fig. 6は減圧下における相対蒸気圧0.5以下の臭気物質 に関し,その相対蒸気圧の関数としてプロットしたセ ピオライト表面でのピリジン,スチレン,酢酸エチ

Adsorption isotherms of ammonia and ethylene under Fig. 5 reduced pressure at 25 without air nor water.

Fig. 6 Adsorption isotherms of adsorbates under reduced pressure at 25 without air nor water.

豊田中央研究所R&Dレビュー Vol. 28 No. 2 (1993.6)

ル,ヘキサンの吸着量を示す。一般的な傾向として, 臭気物質の吸着量は,それらの平衡濃度の増加ととも に増える(Fig.5とFig.6)。この傾向から判断して, それらの吸着挙動はラングミュア型ではなく,ヘンリ ー型,フロインドリッヒ型,フルムキン-テョムキン 型のいずれかと考えられる。Fig.5とFig.6に対して最 も適応する関数を探索した結果,吸着挙動はBET式か フロインドリッヒ型であることがわかった。

Fig. 5とFig. 6に示したセピオライト表面での臭気物 質に対してlog-logプロットした曲線の勾配はエチレン に対する勾配を除いて小さい(Fig. 7(a))。従って, その吸着容量は相対蒸気圧が0.001~0.5の範囲におい てはどれも同じである。このことから,減圧下におい て、この範囲の相対蒸気圧を持つアンモニア、ピリジ ン,酢酸エチル,スチレン,ヘキサンは,セピオライ ト表面で疎水性または親水性のいずれであるかによら ず,ほぼ同じ機構で吸着されると解釈される。Table 2 に示すように,25 におけるBET表面積, すなわち単 一吸着分子層で覆われた面積は、アンモニアで 246m²/g,ピリジンで290m²/g,スチレンで230m²/gで あった。これらの値は互いに極めて近い値である。大 気中におけるセピオライトのBET表面積は-196の窒 素に対して284m²/gで,上記の諸ガスの値(230~ 290m²/g)にほとんど等しい。このことは,これらの ガスの吸着機構が窒素に対する機構と同じか極めて類 似していることを示している。酢酸エチル,ヘキサ ン,エチレンに対するBET表面積はそれぞれ249, 199,89m²/gであった。酢酸エチルとヘキサンは上で 述べたのと類似の機構で吸着されていると推定される が、エチレンの吸着機構はやや異なると考えられる。 エチレンの吸着が著しく少ない理由の一つはその疎水 性にあると考えられる。

Fig. 7(b)に示したように,活性炭表面でのアンモニ アに対する吸着等温線の勾配はセピオライト表面での 勾配より大きく,アンモニアに対する活性炭の吸着容 量は相対蒸気圧の減少とともに減少した。他方,活性 炭表面でのエチレンに対する吸着等温線の勾配はセピ オライト表面での勾配とほとんど等しく,またエチレ ンに対する活性炭の吸着容量は相対蒸気圧の減少とと もに減少した。エチレンに対する活性炭の吸着容量が セピオライトの吸着容量の約10倍もある。それ故エチ レンに対して,活性炭はセピオライトよりも実際上有 用である。しかし, Table 2に示したように,活性炭の BET表面積は25 のアンモニアとエチレンに対して は,それぞれ254と393m²/g,-196 の窒素に対しては 1073m²/gである。この値から,活性炭表面の約1/3だ けがこれら分子の吸着に効いているに過ぎず,エチレ

Fig. 7 Adsorption isotherms (log-log plots) of adsorbates under reduced pressure at 25 without air nor water.

ン吸着に対して活性炭がセピオライトに比して優れて いる原因は,その表面積の絶対値がセピオライトに比 して大きい点にあると言える。

減圧下,温度25,相対蒸気圧10⁻³~10⁻¹のアンモ ニアにおいてセピオライトと活性炭はともに1mmol/g 以上のアンモニアを吸着する(Fig. 7)。しかしなが ら,相対湿度30%の大気中において,相対蒸気圧10⁻⁷ ~10⁻⁵のアンモニア濃度のとき,セピオライトは0.01 ~0.1mmol/gのアンモニアを吸着し,一方,活性炭は 0.0001~0.01mmol/g吸着する。このアンモニア吸着量 の大きな差はそれら表面の吸着水の層とアンモニアと の相互作用の差による。

4.まとめ

温度25 ,相対湿度30%の大気中におけるセピオラ イトによるアンモニア,アセトアルデヒド,ピリジン, トルエン,スチレン,アセトンに対する吸着等温線と 減圧下におけるセピオライトによるアンモニア,ピリ ジン,酢酸エチル,スチレン,エチレン,ヘキサンに 対する吸着等温線を測定し,大気中におけるセピオラ イトによるガス吸着と減圧下におけるセピオライトに よるガス吸着の相違を検討した。またセピオライトと 活性炭によるガス吸着を検討して,その特性を比較し た。得られた結果を以下に要約する。

(1) 温度25 ,相対湿度30%の大気中においてセピオ ライトはアンモニア,ピリジン,アセトアルデヒド,ア セトン,スチレンのような臭気物質を吸着した。

 (2) 温度25 ,相対湿度30%の大気中においてセピオ ライトの吸着量は,相対蒸気圧10⁻⁵のアンモニア,ピリ ジン,アセトアルデヒドに対して,それぞれ約0.15, 0.011,0.0042mmol/gであり,相対蒸気圧10⁻³におい て,アセトン,トルエン,スチレンに対してそれぞれ 0.73,0.04,0.0045mmol/gであった。

 (3) セピオライト表面でのアンモニア,ピリジン,ア セトアルデヒド,トルエン,スチレンの吸着はそれらの相対蒸気圧がそれぞれ10⁻⁷~10⁻⁵,10⁻⁵~10⁻⁴,10⁻⁵~10⁻⁴,10⁻⁵
 ~10⁻⁴,10⁻⁴~10⁻²,10⁻³~10⁻²の範囲においてフロインドリッヒの式に従う。他方,アセトンの吸着はその相対蒸気圧が10⁻⁴~10⁻²の範囲においてフロインドリッヒの式に従がわず,そのlog-logプロットは曲線であった。
 (4) 温度25 のアンモニア,ピリジン,酢酸エチル,ス チレン,ヘキサンに対するセピオライトのBET表面積 は、それぞれ約246、290、249、230、199m²/gであった。 (5) 減圧下においてセピオライト表面への臭気物質 の吸着量は温度25 、相対蒸気圧10⁻¹のアンモニア、ピ リジン、酢酸エチル、スチレン、ヘキサンに対して、 それぞれ6.0、2.0、1.5、1.0、0.8mmol/gであった。

(6) 温度25 ,相対湿度30%の大気中において,活 性炭表面による臭気物質の吸着量は,相対蒸気圧10⁻⁵の ピリジン,アセトアルデヒド,アンモニアに対して, それぞれ約0.015,0.011,0.008mmol/gであり,相対蒸 気圧10⁻³のアセトン,トルエン,スチレンに対して, 約0.9,0.4,0.06mmol/gであった。

(7) 大気中におけるセピオライト表面でのアンモニ ア,アセトン,ピリジン,アセトアルデヒド,トルエン,スチレンの吸着量の序列は各臭気物質の親水性の 程度の序列と一致しており,このことからセピオライトの吸着挙動は親水的と考えられた。

(8) 活性炭におけるアンモニア,アセトン,ピリジン, アセトアルデヒド,トルエン,スチレンはそのほとん どが水分子に占有されていない表面に吸着される。この ことから活性炭の吸着挙動はむしろ疎水的である。

謝 辞

本研究に当たり,当所取締役副所長上垣外修己理学 博士,福嶋喜章工学博士には有益なる御討論と御教示 を頂いた。また,鈴木隆敏主監,林宏明主任研究員に は研究の各段階において御指導頂いた。

参考文献

- Brauner, K. and Preisinger, A. : Tsch. Miner. Petr. Mitt., 6 (1956), 120 ~ 140
- Bueno, F. R., Sanchez, M. V., Pradas, E. G. and Gonzalez, J. D. L. : An. Quim., 81(1985), 18 ~ 21
- 3) Dandy, A. J. : J. Phys. Chem., 72(1968), 334 ~ 339
- 4) Dandy, A. J. : J. Chem. Soc., 14(1971), 2383 ~ 2387
- 5) Serna, C. and Fernandez-Alvarez, T. : An. Quim., 70(1974), 760 ~ 764
- Serna, C. and Fernandez-Alvarez, T. : An. Quim., 71(1975), 371 ~ 376
- Inagaki, S., Fukushima, Y., Doi, H., Kamigaito, O. : Clay Miner., 25(1990), 99 ~ 105
- 8) 和田猛郎: "Mol", No.3(1982), 21~27, オーム社
- 9) 杉浦正洽,堀井満正,林宏明,鈴木隆敏,朝枝繁,川合浩史, 永岡努,酒井幹一郎:第22回中部化学関係学協会支部 連合秋季大会講演予稿集,(1991),330
- Sugiura, M., Horii, M., Hayashi, H., Suzuki, T., Kamigaito, O., Nogawa, S. and Oishi, S. : Sci. Géol. Mém., 89(1990), 91 ~ 100

- 11) 山田嘉夫, 荒木收, 梅本芳朗, 杉浦正洽, 須田明彦, 堀井 満正, 関原孝俊, 松山昭博, 折戸厚憲:自動車技術会学 術講演会前刷集912, (1991), 1.205~208
- Yamada, Y., Araki, O., Sugiura, M., Horii, M., Sekihara, T. and Matsuyama, A.: JSAE Review, 13(1992), 82 ~ 87
- 13) 杉浦正洽,須田明彦,林宏明,鈴木隆敏,関原孝俊,松山 昭博,折戸厚憲,渡辺有樹:日本化学会第62秋季年会講 演予稿集,1-I37(1991),864
- Sugiura, M., Hayashi, H. and Suzuki, T. : Clay Sci., 8(1991), 87 ~ 100
- 15) 杉浦正治,山下勝次,林宏明,鈴木隆敏:日本粘土学会 第34回粘土科学討論会講演要旨集,(1990),88
- 16) Sugiura, M. and Fukumoto, K. : Clay Sci., 8(1992), 195 ~ 209
- 17) Sugiura, M.: Clay Sci., 投稿中
- 18) Sugiura, M., Fukumoto, K. and Inagaki, S. : Clay Sci., 8 (1991), 129 ~ 145
- 19) 化学便覧,基礎編,改訂三版,日本化学会編,(1984),111,丸善
- 20) 慶伊富長:吸着,(1960),97,共立出版
- 21) Secher, P. G., Windholz, M. and Leahy, D. S. : The Merck Index (8th Ed), (1968), 990
- 22) 化学便覧,基礎編,改訂二版,日本化学会編,(1966),622,
 丸善

著者紹介

 杉浦正洽 Masahiro Sugiura
 生年:1942年。
 所属:触媒材料研究室。
 分野:吸着材料,多孔材料,触媒。
 学会等:日本化学会,自動車技術会, 日本粘土学会,日本吸着学会,
 日本セラミック協会,日本珪藻 学会会員。

福本和広 Kazuhiro Fukumoto 生年:1960年。 所属:多孔体グループ。 分野:触媒吸着材料。

稲垣伸二 Shinji Inagaki
 生年:1959年。
 所属:無機高分子研究室。
 分野:無機合成化学,触媒化学。
 学会等:日本化学会,触媒学会,ゼオラ
 イト研究会,日本吸着学会,
 日本粘土学会会員。