

Hiroo Fuma, Toshio Murata, Atsushi Miura, Naohiro Sugiyama, Atsuto Okamoto, Toshihiko Tani, Hiroyuki Kano

要 旨

本研究報告は,SiC半導体に関する試験研究の成果をまとめたものである。SiCはシリコンに比べ,高 温環境下での低リーク電流の素子開発が期待されており,高耐圧で低損失な電力素子への検討も行われ ている。結果の要約を以下に示す。

- 1.1インチサイズの4H-SiCバルク単結晶の成長を達成した。結晶欠陥の評価結果としてE. P. D. (Etch Pit Density) 10⁴ ~ 10⁵ cm⁻²の値が得られた。
- SiCエピタキシャル成長用高温(1500)CVD装置を内製し,3C-SiCのSi(100)基板上へテロエピタキシャル成長,4H,6H-SiCのホモエピタキシャル成長を達成した。エピタキシャル成長層のn型不純物 濃度は10¹⁷~10²⁰cm⁻³(3C),10¹⁷~10¹⁹cm⁻³(6H),p型不純物濃度は10¹⁶~10¹⁷cm⁻³(6H)の範囲で制御可能である。
- 3.窒素を基板温度750 で注入するホットイオン注入工程を用いたプロセスを用いてSiC MOSFETの試 作を行い, 3C-SiCにて400 まで, 6H-SiCにて500 までのトランジスタ動作を確認した。
- Au/6H-SiCショットキーダイオードを作製し,絶縁破壊電界の値として1.3MV/cm(Siの1000V耐圧での0.25MV/cmの約5倍),耐圧では700Vを確認した。さらにSiCの熱酸化膜の耐圧として8MV/cmとSiの熱酸化膜並みの値が得られた。

Abstract

This paper reports the results of the research on silicon carbide (SiC) semiconductor material. SiC is a promissing material for low leakage devices and a candidate for novel high power device development. The results obtained are summarized below.

- 1. One-inch-size 4H-SiC single crystals have been grown by a sublimation method. The etch pit density of the crystals is in the range of 10^4 - 10^5 cm⁻².
- 2. By using internally-built chemical vapor deposition apparatus, 3C-SiC, heteroepitaxial-growth on Si(100), 4H-SiC homoepitaxial-growth, and 6H-SiC homoepitaxial-growth have been achieved.
- By using nitrogen-hot-ion-implantation process with substrate heating at 750 , SiC MOSFETs have been fabricated. 6H-SiC MOSFETs have operated even at 500 and 3C-SiC MOSFETs have operated at 400 .
- 4. Au/6H-SiC schottky diodes have been fabricated and a breakdown electric field of 1.3 MV/cm has been obtained, which is about five times stronger than 0.25 MV/cm in Si material for 1000 V breakdown design. The Au/6H-SiC shottky diode showed 700 V breakdown voltage. SiC-thermal-oxide exhibited a dielectric breakdown field of 8 MV/cm, which is as high as that of Si thermal oxide.

キーワード

シリコンカーバイド,ワイドバンドギャップ半導体,エピタキシャル成長,CVD,不純物制御,MOSFET, 昇華法,単結晶基板,結晶欠陥,結晶成長

1.はじめに

SiC(炭化珪素)半導体はバンドギャップが広いた め,高温下でもリ-ク電流が低く高温動作可能な半導 体,及び青色LED用材料として古くから研究が行われ, 1959年に第一回の国際会議が開催されている。

当初は,大型の単結晶基板の作製が出来なかったた め研磨材を作製する際に偶発的に得られるアチソン単 結晶が用いられていた。1981年にTairovにより改良 Lely法¹⁾(昇華法)を用いたSiCバルク単結晶の作製 論文が発表されると,青色LEDの製作を目的として1 インチ径の6H-SiC単結晶基板が作製されるようにな り,同時にトランジスタの試作研究も活発化した。国 内での国家プロジェクトとしては通産省工業技術院電 子技術総合研究所で1981年~1985年度に行われた次 世代産業基盤技術研究開発制度のもとでの「耐環境強 化素子の研究開発」及び1990年度より1994年度まで の立地公害局1/2補助金事業の「SiC/Siヘテロ接合高温 半導体素子の開発」があり,1994年より大阪工業技術 試験所を中心としたプロジェクトが発足している。最 近では,SiCのMOS型素子はSiの高耐圧(>300V)電 力素子に比べ著しくオン抵抗を低減できる(1/10~ 1/100)ことが期待される3)ため,電力素子への関心も 高まっている。

当所におけるSiC半導体に関する業務は,着手した 時点でMOS型素子の作製が報告されていなかったこ とから,3C-SiC/Siヘテロエピタキシャル成長やアチ ソン基板上へのホモエピタキシャル成長による MOSFETの作製を目的として開始した。その後,良質 のバルク単結晶作製を目的とした研究も開始した。そ して,500 でのMOSFET動作を確認することにより SiCデバイスの可能性の一端を示すとともに²⁾,1イン チ4H-SiC基板の作製及び電力用素子の可能性検討を 行った。以下これまでに得られた結果について記述する。

2. SiC単結晶基板

2.1 バルク単結晶成長

当所におけるSiCバルク単結晶成長研究は,半導体 デバイスに使用可能な高品質の基板作製を目的として 開始した。研究着手時に市販の成長装置はなく,昇華 法の原理に基づいた成長炉とるつぼ構造を設計・試作 しながら開発を行っている。 昇華法では,準密閉系の黒鉛るつぼ中で,SiC原料 粉末を高温部に,SiC種結晶を低温部に設置し¹⁾,高 温部で熱分解により生じた蒸気種(主にSi,SiC₂, Si₂C⁴⁾)が過飽和となる低温部に輸送され,種結晶上 に堆積する。このため,原料と種結晶の温度を独立制 御できるように,上下二段の発熱体を有する抵抗加熱 炉を用いて結晶成長を行った。以下に,種結晶の調製, 原料粉末の昇華挙動の把握,初期成長の改善,成長結 晶の高品質化について述べる。

種結晶としては,六方晶の{0001}面を自然面として 有しているアチソン単結晶を用いた。この自然面を基 準にダイヤモンド砥粒によって鏡面研磨し, ϕ 10mm×1mmのペレットを作製する。さらに,結晶 表面の研磨ダメージ層を除去するため,1100 ×2hr 湿式酸化を行う。この酸化膜は成長実験に種結晶とし て供する前にHFで除去する。また,極性のあるSiC結 晶の表裏で酸化速度の差が生じることを利用して,結 晶の(0001)面(いわゆるSi面)と(0001)面(いわゆるC 面;Si面より酸化膜が厚い)の判別を行う。

原料として用いるSiC粉末はその粒径や形状によっ て充填密度が異なり,その昇華挙動も異なる。昇華量 の時間依存性を調べると,大粒径粉末の方が昇華量が 多く,また,昇華時間に対する昇華速度の変化が小さ いことが確認できた⁵。

成長実験に用いた温度と圧力のプロファイルをFig. 1 に示す。原料から輸送された昇華ガス種が飽和に至る 前に種結晶が熱分解したり,低温成長によって多形が

Fig. 1 Experimental scheme for SiC bulk single crystal growth.

混在するのを防止するため,原料および種結晶の温度 が設計値に達した後,系内の圧力を徐々に減少させて いる。しかしながら,温度と圧力の制御だけでは再現 性のある高品質単結晶成長が困難であった。そこで, 成長が定常状態に至る前の段階(Fig.1中A)で温度を 下げ,成長初期における種結晶の表面状態を調べた (Fig. 2)。EPMAによる組成分析の結果,炭素層の上 に島状のSiC結晶が成長を始めていることがわかった。 これは,種結晶が不飽和蒸気圧下で高温に加熱された ため表面で昇華が起こり,炭化が進んだためと推察さ れる。そこで,この表面炭化を防止するため,種結晶 近傍に金属Siを設置した。これは,Si-SiC系のSi平衡 蒸気圧はSiC-C系のSi平衡蒸気圧よりも大きい⁴)こと を利用したものである。金属Siを設置した場合には種 結晶の表面炭化は抑制され、良好な初期成長が実現で きた⁶⁾。

単結晶の成長は種結晶温度を一定とした場合,原料 温度が高く雰囲気圧が低いほど成長量が増加した。一 方,成長量が大きすぎると多結晶が生じやすくなる。 3mm/6hr程度の成長速度を有する成長条件(種結晶温 度2230 ,原料温度2295 ,雰囲気圧1torr)にて24hr 成長実験を行い, Ø10mmの種結晶からØ17mm × 9mm 程度の六方晶の晶癖を有した結晶を得た(Fig. 3)。得 られた結晶を加工し,次の種結晶として用いることに よって,結晶口径の拡大を順次図ることができる。 Ø17mmの結晶を種結晶とする事により,Ø25mm(1イ ンチ)の結晶成長を実現した。 さらにここで特記しておくことは,得られる成長結 晶の多形の変化である。SiCにはSi-C二重原子層の <0001>軸に沿った積み重なり方が異なる多形(3C, 4H,6H等)が存在する。アチソン結晶として得られ る結晶は,通常6Hである。昇華法による成長結晶の 多形制御については,面極性によって4H,6Hの制御 が可能であるという報告⁷⁾があるが,成長条件による 多形の制御は現在のところ十分に確立されていない⁸)。 我々は,C面を用いた実験で4H結晶が成長し,原料温 度が高い条件で4H結晶が再現性良く得られる事を見 いだした。

このようにして成長した結晶中には,通常マイクロ パイプと呼ばれる直径数µmの中空パイプが観察され る。この欠陥は電子デバイス作製にあたっては致命傷 となるため,マイクロパイプのないバルク結晶成長が 望まれている。マイクロパイプは一般に,大きなバー ガーズベクトルを持つらせん転位が歪エネルギーを緩 和するために形成される⁹⁾と考えられている。SiCの {0001}面ではスパイラル成長が支配的に起こるため, このような欠陥が発生しやすい。Fig. 4Aのように種 結晶に存在するマイクロパイプは, {0001}面に垂直な 方向の成長では成長結晶中に引き継がれる。一方, c軸 を含む{1100}面を成長面とした場合には,マイクロパ イプが観察されない高品質な結晶が得られた。Fig.4B に示すように,種結晶部に存在する六角形の大エッチ ピット・円形の小エッチピット(前者はマイクロパイ プ,後者はらせん転位と小傾角境界に相当)が,成長 結晶には見られない。この結果は,高橋ら100による, {1100} 面及び {1120} 面を成長面とした結晶成長に関す る報告と一致している。

10µm

[Si concentration] [C concentration] high low high low

SEM image

Concentration maps

Fig. 2 Morphological and elemental analyses for an initial-stage (A in Fig. 1) growth surface of SiC single crystal.

Fig. 3 A SiC ingot grown (for 24 hrs) on a ϕ 10mm Acheson seed crystal.

電子デバイス実現に向けて,SiCバルク単結晶基板 には,口径の拡大とともにさらなる高品質化が求めら れている。

2.2 基板の作製と評価

2.2.1 ウェハの作製

Siと異なり,高硬度(ダイヤモンドの硬度を15とし た新モース硬度で13)のSiCの加工には,コスト高と 共に,歪み・損傷が発生し易いなどの困難が伴う。現 在はSiなどの半導体や他の結晶材料で吟味された加工 技術を参考に,(1)スライシング(2)研磨(3)洗浄(4)エ ッチングの各工程を実施し,SiC基板用ウェ八の作製 と評価を行っている。

SiC単結晶の電気 / 光学特性及び酸化 / 腐食などの 化学的特性は結晶面方位に依存する。品質評価やデバ イス評価に供する基板は,スライシングの前に結晶面 方位を決定する必要がある。面方位の決定は成長結晶 のインゴットを切断用ゴニオヘッドに乗せ,X線ラウ

Fig. 4A Cross section of SiC crystal grown in the <0001> direction.

Fig. 4B Alkaline-etched cross section of SiC crystal grown in the <1100> direction.

豊田中央研究所 R&D レビュー Vol. 30 No. 2 (1995.6)

工法により行っている。より精密な面方位が必要な場合は,切断後の研磨工程で補正する。SiC単結晶イン ゴットの切断は,ダイヤモンド砥粒の付いた外周ブレ ードにて行う。切り口の周辺にチッピングが生じ易い ため,外周面取り研磨と十分なラッピングによりその 影響を低減する必要がある。

切断後,加工歪みのない平坦なウェハを得るために, (i)粗研磨(ii)ラッピング(iii)ポリッシングの工程を実施している。研磨材としては,SiCより硬いダイヤモンド砥粒を用いている。各段階の仕上がりは実体顕微鏡による斜光観察(表面傷の有無)により評価している。表面粗さ,加工変質層の除去については, RIE(Reactive Ion Etching)¹¹⁾,メカノケミカルポリッシングによる方法が有効である¹²⁾。

2.2.2 結晶の評価

成長結晶の品質を評価するために,(1)結晶多形の 判定(2)結晶性,結晶欠陥の評価(3)不純物の定量(4) 光学/電気的特性評価を行っている。

SiCの結晶多形(積層構造)を決定する方法として は,(i)X線回折法(ii)ラマン散乱分光法(iii)高分解能電 子線顕微鏡測定(iv)高速反射電子線回折RHEEDパタ ーンの解析などが挙げられるが,asgrown結晶のまま でも簡便に判定が可能であるラマン散乱分光法にて主 に行っている。この方法では積層構造と周期性を反映 した,多形によって異なるスペクトルが観測される¹³。

SiC単結晶ウェハに含まれる空隙や介在物などの巨 視的欠陥や,転位や空孔などの微視的欠陥は基板特性 に大きな影響を及ぼす。結晶性の評価としては結晶を 直接観察する方法(X線回折(ロッキングカーブ),各 種顕微鏡観察, RBS)と発光, 光吸収・散乱, ESRや 電気的特性などの物性を通して評価する方法とがあ る。我々は,溶融アルカリ(KOH)エッチング法によ るエッチピット観察を採用している。本法では、 (0001)Si面上に大きさの異なる3種類のエッチピット14) が観察される。大きい正六角形のエッチピットは,前 述のマイクロパイプ欠陥に対応しており,断面観察で はほぼc軸に平行な筋として観察される(Fig. 4A)。 その数は通常のc面成長結晶で10²~10³/cm²程度であ る。またその他の欠陥(転位や点欠陥)は,10⁴~ 10⁵/cm²存在している。六角形・円形のピット以外に は貝殻状のピット(c面内のすべり転位に由来)が観 察される10)。

SiC単結晶ウェハに含まれる不純物は, グロー放電 質量分析法(GDMS)や二次イオン質量分析法(SIMS) といった直接的な方法の他に,フォトルミネセンス (PL), 電子スピン共鳴(ESR), 電気伝導率の温度依 存性などを用いて調べられている。当所で成長した 4H-SiC単結晶ウェハ中の不純物濃度のGDMS分析結果 をTable 1に示す。不純物濃度は原料のそれと比較し て格段に低減される事が分かる。また金属不純物の他 に原料や反応系内の残留雰囲気に由来する窒素が多く 含有されている事を,吸収スペクトルの主吸収ピーク 位置により確認した14,15)。現在の反応系(ノンドー プ)で得られる成長結晶はn-type SiCであり,室温に おけるホール測定により,両多形(6H,4H)共にキ ャリア濃度:~10¹⁸/cm³;移動度:~100cm²/V・s程度 の値を得ている5)。この値は,結晶性及び結晶中の欠 陥,不純物によって変化し,単結晶の品質の向上によ り改善されるものと考える。

3. SiCエピタキシャル成長

SiCは不純物拡散が困難なこと,イオン注入技術が 現在十分に確立されていないことから,デバイス作製 に必要なキャリア濃度制御方法としてはエピタキシャ ル成長中にド - パントを添加する気相ド - ピングが最 も有効な方法と考えられる。また現状バルク結晶は, 高品質な結晶を得ることが難しく,このためエピタキ シャル成長による高品位SiC単結晶層の形成が重要と なる。

エピタキシャル成長は、その結晶の構成物質をどの ような形態で供給するかにより気相エピタキシ -(VPE, CVD),液相エピタキシ - (LPE),分子線エ ピタキシ - (MBE)に分類される。これらのうち、 CVD法は不純物濃度やpn接合界面の制御が可能であ ること、さらに大型基板、複数枚基板の利用が期待で きることから、CVD法によるエピタキシャル成長を 我々は検討している。

本章では以下SiCエピタキシャル成長用に内製した CVD装置の特徴,エピタキシャル成長方法,さらに 形成したエピタキシャル成長層の電気的特性と気相 ド-ピングによる不純物濃度制御について報告する。

3.1 SiCエピタキシャル成長装置

SiCのエピタキシャル成長に必要な温度は1300~ 1500 とSiの成長温度(900~1200)に比較して高 い。この温度は反応管材料として多く使用されている 石英の軟化温度を越える温度である。またSiCでは窒 素がn型のド - パントとなってしまうため,装置の パ - ジガスとして他のガスを使用しなければならな い。このような点を考慮し,我々はSiCエピタキシャ ル成長用のCVD装置として常圧及び減圧タイプの2種 類の装置を内製した。ここでは最近内製した減圧タイ プの装置を紹介する。

内製減圧CVD装置の概略図をFig.5に示す。原料ガスはSi源にSiH₄,C源にC₃H₈を用いる。キャリアガス H₂により,これら原料ガスを反応管内へ導入し,サセ プタ上で加熱された基板へSiCをエピタキシャル成長 させる。パ-ジガスには窒素がn型のド-パントとな るため,Arを用いる。また窒素は大気中に多く存在す ることから,特に配管,反応管等の残留窒素濃度低減 のため,タ-ボ分子ポンプにより10⁻⁶Torr程度までの 真空引きが可能な構成としている。石英の軟化点を越 えるような高温での成長に耐えるため,反応管は水冷 二重構造の石英管とし,高周波誘導加熱によるコ-ル ドタイプを採用している。サセプタはSiCコ-トした カ-ポンを採用している。1300 以上のサセプタを石 英で支持することは困難なことから,サセプタの支持 方法や構造に工夫をしている。

3.2 SiCエピタキシャル層の形成,評価

エピタキシャル成長はSi基板上への3C-SiCヘテロエ ピタキシャル成長,6H-SiC基板上へのホモエピタキシ

Table 1 Analytical results for impurities in SiC by ICP spectrometry (powder) and GDMS (grown crystal).

Sample	Average diameter (μm)	Impurity concentration (wt. ppm.)						
		Fe	Al	Ca	Mg	Ti	V	N*)
SiC source powder	10	122	44	8	5	66	25	170
Grown crystal (4H)	-	1.1	0.32	< 0.015	-	0.11	0.006	-

*) inert gas fusion method

ャル成長,4H-SiC基板上へのホモエピタキシャル成長 について検討し,良好なエピタキシャル成長層を得て いる。ここではこれらのうち3C-SiC及び6H-SiCのエ ピタキシャル成長について説明する。

(3C-SiC/Siヘテロエピタキシャル成長)

3C-SiCは電子移動度が6H-SiCより大きいという電 気的性質を持っている。3C-SiCはバルク状の大きな結 晶が現状得られていないことから,Si(100)基板上へ炭 化法¹⁶⁾を用いたヘテロエピタキシャル成長によりデ バイス試作可能な3C-SiC単結晶層を形成した。装置に は常圧CVD装置を用いた。

Si基板上に3C-SiCをヘテロエピタキシャル成長する 際の工程について以下に記す。3インチSi(100)基板を 反応管内のサセプタ上にセットし,キャリアガスH₂ を流して高周波誘導加熱する。1100 でHCIによるSi 基板のエッチングを行い,その後基板温度を室温近く まで下げる。次にC₃H₈を流しながら3C-SiCのエピタ キシャル成長温度1350 まで昇温する(炭化工程)。 この炭化工程は炭化SiC層を制御する重要な工程であ り,昇温時間の違い等がエピタキシャル成長層に大き な影響を与える。成長温度に到達後SiH₄を流し3C-SiC のエピタキシャル成長を行う。

この成長により鏡面をもつエピタキシャル成長層が

Fig. 5 Schematic figure of low pressure chemical vapor deposition system.

得られた。この時の成長速度は約1.5~4 μ m/hである。 成長層はX線回折による半値幅が0°05'(測定限界以 下)と比較的良好な3C-SiC単結晶であることを確認し ている。成長したエピタキシャル成長層についてホ-ル測定を行った結果,アンド-プでn型を示し,キャ リア濃度約1×10¹⁶cm⁻³,ホ-ル移動度約500cm²/Vs, 抵抗率約1Ωcmという値が得られた。

(6H-SiCホモエピタキシャル成長)

従来6H-SiC(0001)面へのホモエピタキシャル成長は 1800 を越える高温が必要とされてきたが,ステップ 制御エピタキシ - 法¹⁷⁾により,成長温度の低下 (1500 以下)と再現性の良い6H-SiCホモエピタキシ ャル成長が可能となった。我々のグル - プにおいても この方法により,良好な6H-SiCホモエピタキシャル 成長層を得ることができている。

6H-SiCのホモエピタキシャル成長方法について以下 に記す。6H-SiCは現状,基板としての供給が十分でな いことから,6H-SiCインゴットもしくはアチソン結晶 を基板状に加工し,鏡面仕上げを行う必要がある。研 磨による鏡面仕上げの後では,基板表面は顕微鏡観察 により傷等の観られないことを確認している。その後, 研磨ダメ - ジの除去を行うため反応性イオンエッチン グ(RIE)による研磨ダメ - ジ層の除去を 0.2μ m行い, さらにWet O_2 で1100 ,2時間による酸化と酸化膜除 去を行っている¹¹)。前処理後の6H-SiC基板は反応管 内のサセプタ上にセットする。キャリアガスH₂を流 し,高周波誘導加熱により成長温度の1500 まで昇温 する。原料ガスであるSiH₄,C₃H₈を反応管内へ供給し, エピタキシャル成長を行う。

このエピタキシャル成長により表面平坦性の優れた 良好な6H-SiCエピタキシャル層が得られた。良好な 表面モホロジ - を得るには成長前の基板の前処理が重 要である。Fig. 6は基板前処理としてRIEを用いなか った場合(写真左側)と用いた場合(写真右側)のエ ピタキシャル成長後の表面モホロジ - を示したもので ある。研磨後の表面は鏡面を示していたにもかかわら ず,前処理にRIEを用いない場合のエピタキシャル成 長表面には研磨ダメ - ジが原因と考えられる線状の溝 が多く観察され,荒れた面となる。これに対し,前処 理にRIEを用いた場合,この線状の溝の発生を抑制で き,エピタキシャル成長後においても表面平坦性の優 れた面が得られ,RIEを用いた基板前処理は良好なエ ピタキシャル成長表面の形成に有効であるという結果 を得ている¹¹。

エピタキシャル層の成長速度は約0.5μm/hである。 成長層はラマン分光測定を行った結果,6H-SiCである ことを確認している。この6H-SiCホモエピタキシャ ル層についてAuショットキ - ダイオ - ドを作製し, アンド - プでのドナ - 濃度及びAuショットキ - 耐圧 を調べた。その結果ドナ - 濃度10¹⁴ ~ 10¹⁵cm⁻³, エピ 厚約8μmでショットキ - 耐圧700V以上と良好なエピ タキシャル層が得られている。

(不純物制御)

SiCは他のワイドバンドギャップ半導体に比較してn型,p型の伝導型が比較的容易に制御できる。ド-パントとしてn型には五族元素のN,Pが,p型には三族元素のB,Ga,Alがあげられる。まず,n型不純物制御について記す。Fig.7は3C及び6H-SiCへの窒素の気相ド-ピング特性を示したものである。窒素源としてN₂,NH₃の2種類のガスについて検討した。3C-SiCについてはホ-ル測定から求めたキャリア濃度を,6H-SiCについてはAuショットキ-ダイオ-ドのC-V測定から求めたドナ-濃度を表わしている。N₂,NH₃ガスの使用により3C-SiCでは10¹⁷~10²⁰cm⁻³,6H-SiCでは10¹⁷~10¹⁹cm⁻³の範囲で制御性良く不純物ド-ピングできることがわかった。また,3C-SiCではNH₃ガスの使用によりキャリア濃度2×10²⁰cm⁻³,抵抗率10⁻³Ωcmの低抵抗n型層を得ることができた。

p型不純物制御についてはトリエチルアルミニウム (TEA)による6H-SiCへのAIの気相ド - ピングについ て検討しており,現状ではアクセプタ濃度10¹⁶~ 10¹⁷cm⁻³のp型制御が可能となっている。なお, 10¹⁷cm⁻³以上のド - ピングは,TEAよりも飽和蒸気圧 の高いトリメチルアルミニウム(TMA)を用いたド -ピングにより可能となることが報告されている¹⁸⁾。 AIアクセプタは,SiC中への取り込まれ方が成長時の 面方位に大きく依存すること,AIの準位が約0.25eVと 深くイオン化率が低くなること等の問題があり¹⁸⁾, ド - ピング機構の解明,浅い準位の形成等,今後の検 討が必要と考えられる。

4.SiCデバイス

現在SiのIC素子にはMOSFET(Metal-Oxide-Semiconductor Field-Effect-Transistor)が多用されている。このMOS型のトランジスタはSiのみで実用化されており,他の半導体では実用化されていない。これはSiを熱酸化した場合に形成されるSiO₂膜が,良好な絶縁性及び界面特性を有することによる。SiCの場合にもSi原子を含むことから熱酸化膜(SiO₂)が形成できることが知られており,筆者らが研究に着手して間もなく1986年にMOSFETの作製が報告されている¹⁹。

SiC熱研究ではMOSFETの特性上重要な酸化膜の特性に重点をおくとともに,電力素子としての可能性に

Fig. 6 Normarski microphotograph of the 6H-SiC epitaxial layer. In the photograph, left side area (α) is epitaxial layer without RIE treatment as the substrate preparation process. Rigth side area (β) is the epitaxial layer after RIE (0.2 μ m) treatment.

Fig. 7 Carrier concentration of nitrogen doped layer in 3C, 6H-SiC as a function of the nitrogen/carbon ratio during CVD growth.

ついて検討を進めてきた。なお,SiC MOSFETを試作 する際のプロセスについては,最近では他機関より研 究結果が報告されているが,我々が着手した時点では ほとんど報告がなかったため,大半は自主開発した。

4.1 プロセス技術

SiCの構成元素はSi, Cであり, 毒性も無いことか らエピ基板が準備されればシリコンプロセスがほぼそ のまま流用可能なことが特徴となる。相違点として SiCは不純物の拡散が困難と言われており, これにつ いてはイオン注入あるいはエピ成長とRIEを用いたメ サエッチングを試みた。

以下, RIE, 熱酸化工程, イオン注入工程, 電極に ついて述べる。

[RIE]SiCのエッチングレ - トはSiに比べてかなり 遅い。CF4ガスを用いたSiプロセスでの通常条件では エッチング後に表面荒れが生じた。そこで我々はアル ミをマスクに用い,CF4ガスを用いて通常より低圧 (3.8Pa)にてRIEを行うことにより良好な結果を得た²⁰。 このRIE条件はエピタキシャル成長の前処理にも適用 している。

[熱酸化]SiCはSi原子を含むため通常1000 1200 での熱酸化によりSiO₂膜が形成される²¹⁾。SiC の酸化速度はSiより遅く酸化速度の結晶面方位依存性 がSiに比べて大きい。MOSデバイスへの応用のため には熱酸化膜は良好な絶縁性,界面特性が要求される。 1100 , Wet O₂中で形成した3C-SiC上の熱酸化膜はF-N電流が観測され,絶縁性は良好であった。この熱酸 化膜の破壊はシャ - プに起こり, 絶縁破壊電界の値と して最大8MV/cmとSi上の熱酸化膜に近い値を確認す る事ができた。界面特性はMOSダイオ - ドのC-V特性 により評価した。3C-SiC/Siを用いて作製したMOSダ イオ - ドC-V特性の1例をFig.8に示す。理論曲線に近 い特性が得られているため3C-SiC熱酸化膜の界面特性 は比較的良好であることを確認した。さらに, 3C-SiC/SiO₂界面特性の酸化温度依存性,6H-SiCの酸化膜 特性についても調べている22,23)。

[イオン注入]SiCの場合にはイオン注入時に形成される結晶欠陥の熱アニ - ルによる回復がSiに比べて難しい。

このため結晶欠陥の回復に有効な,イオン注入時に 基板を加熱するホットイオン注入工程を用いた²⁴)。

[電極]オ-ミック電極はn⁺層の場合にはAlを, n層

豊田中央研究所 R&D レビュー Vol. 30 No. 2 (1995.6)

の場合にはNi電極を1000 にて合金化して用いた。

p型層へのオ - ミック接合はAIを用いて融点以上の 温度で合金化することにより形成できる事を確認し た。

4.2 MOSFETの試作・評価

MOSFET(エンハンスメント型)の試作プロセスの 概要をFig.9に示す。最初にフォト工程における位置 合わせ用の溝(アラインメントマ-ク)を形成する。 次にイオン注入工程においてマスクとして用いる Poly-Si層を形成する。Poly-Si層を加工後1100 2時間 の酸化を行い,SiC上に約15nmの酸化膜を形成する。 この酸化膜は、イオン注入後の1300 でのアニ・ル工 程において,SiC表面が変質するのを避けるために形 成した。なお,この工程でPoly-Si膜はほとんど酸化さ れる。窒素のイオン注入は酸化膜を通して基板温度 750 にてN₂⁺イオンを用いて行った。SiCの場合ア ニ - ル時にSiC中で窒素の拡散がほとんど生じないた め,イオン加速電圧を2段階設定して表面付近の不純 物濃度を上げている。加速電圧及びド - ズ量は140keV, 2.5×10^{14} /cm², 80keV, 1.5×10^{14} /cm²とした。イオン 注入後アルゴン雰囲気中で1300 , 10分のアニ - ル を行った(イオン注入工程に関しては特に最適化を行 っていない)。アニ - ル後酸化膜をいったん除去し, ゲ - ト酸化を1100 , 200min, Wet O₂中で行った。コ ンタクトホ - ルを形成した後AIを用いてソ - ス, ゲ -

Fig. 8 C-V characteristics of 3C-SiC MOS diode. Values for Theoretical Calculation ; Donor Concentration : 6.0×10^{16} cm⁻³ Relative Dielectric Constant of Oxide : 3.8 Intrinsic Carrier Concentration : 6.7 cm⁻³ Relative Dielectric Constant of SiC : 10

ト,ドレイン各電極をゲ-ト酸化膜上に形成した。最 後にアルゴン中で400 , 10minのアニ - ルを行って MOSFETの試作を終了した。素子試作用の基板にはSi 上にヘテロエピタキシャル成長により形成したBド -プのp型3C-SiC層及び6H-SiCアチソン単結晶(0001)Si 面上に数 μ mのAlド - プp型6H-SiCエピ層(アクセプ タ濃度約1 × 10¹⁶ cm⁻³)を形成したものを用いている。 Fig. 10に3C-SiC MOSFETの400 におけるId-Vd特性 を示す。3C-SiCの場合,高温ほど特性が式(1)の特性 に近づく。これはp型不純物として用いたボロンのア クセプタ準位が0.7eVと深いためと考えている。Fig. 10 中に式(1)を用いて計算した特性を波線で示す。

- Id a \times [(Vg Vt) \times Vd (1/2 + b) \times Vd²] (1) a, b:素子構造によって決まる定数 *Vg*: ゲ - ト電圧 Vt:スレッショルド電圧
 - *Vd*: ドレイン電圧

実測値と計算値は良い一致を示していることから, 400 では正常なトランジスタ動作をしているものと 考えられる。またId-Vg特性よりチャネル移動度の値 として70cm²/Vsを確認することができた。

6H-SiCホモエピタキシャル単結晶層(6H-SiCアチソ ン単結晶上に成長したエピ層)を用いたMOSFETの場

6H or 3C-SiC p-type Epi. Layer 1. Substrate preparation 6H-SiC or Si Sub. 2. Ion implantation (I / I) poly-Si deposition N_2 I/ISiO₂ poly-Si patterning oxidation N2⁺ I / I anneal SiO₂ 3. Gate-Oxidation removal of 1st oxide gate oxidation Al 4. Electrode formation

contact hole etching Al layer deposition Al patterning anneal

Fig. 9 Outline of SiC MOSFET fabrication process. 合にはイオン注入により形成したソ-ス/ドレイン層 の抵抗が高く,同じ条件でのドレイン電流もSi上の 3C-SiCを用いた場合に比べて低いことが課題である が,室温から500 までの正常な動作及び500 での 低リ - ク電流特性を確認する事ができた。また詳細は 検討中であるが4H-SiC MOSFETの試作も行い500 で の動作を確認している。絶縁破壊電界に関してはAu とのショットキ-接合により評価した。Si上に成長し た3C-SiC単結晶は結晶欠陥が多く、リ-ク電流が極め て多いため,SiCの特徴である高耐圧特性は評価でき なかった。

一方,ホモエピタキシャル成長層の6H-SiCは前述 のように耐圧の点で優れた特性を示した。エピ層中の 不純物濃度分布が正確に測定できていないことや,シ ョットキ - 電極端部の処理が出来ていないため現状で は概算値しか得られていないが,絶縁破壊電界の値と して1.3MV/cmとSiの1000V耐圧での0.25MV/cmの約5 倍の値を確認することができた。この値は報告されて いる値 (2.5MV/cm) の約半分の値ではあるが,評価に 用いた素子構造が不十分なため,素子構造の最適化に より報告値は達成可能と考えている。

5.今後の課題と展望

以上SiC半導体バルク単結晶の作製からMOSFETの 作製までの一連の工程の検討により,物性から予想さ れている特性に対する現状での特性把握と課題抽出を 行うことができた。

電力素子の観点では熱酸化膜耐圧として8MV/cmと

Fig. 10 I-V characteristics of 3C-SiC MOSFET. Solid line ; measured, dashedline ; calculated.

豊田中央研究所 R&D レビュー Vol. 30 No. 2 (1995.6)

Si熱酸化膜並みの値が確認できたこと,電力素子の構 造となる縦型MOSFETの動作が確認できたこと²⁷⁾, 及び絶縁破壊電界の値として1.3MV/cmとSiの約5倍の 値が得られたことより,高耐圧で低損失の電力素子と して有望であることが確認できた。高温特性という点 では,筆者らはMOSFETの500 動作の確認のみであ るが,最近では他機関から高温動作ICの試作や²⁵⁾, JFETでの信頼性の評価結果²⁶⁾が報告されており,今 後の進展が期待される。

また,MOS型素子(エンハンスメント型)の課題と して,チャネル移動度の値が最大でも約70cm²/Vsと低 いため,チャネル移動度の改善の必要性と,単結晶基 板に結晶欠陥が多いため,結晶欠陥のさらなる低減が 必要であることが明らかになった。

参考文献

- Tairov, Y. M. and Tsvetkov, V. F. : J. Cryst. Growth, 43(1978), 209
- Fuma, H., Miura, A., Tadano, H., Sugiyama, S. and Takigawa, M. : Amorphous and Cryst. Silicon Carbide II, (1989), 178, Springer-Verlag
- Bhatnagar, M., Alok, D. and Baliga, B. J., : Silicon Carbide and Relat. Mater., (1994), 73, IOP Publ. Ltd.
- Drowart, J. and Maria, G. de. : in Silicon Carbide-1958, Ed. by O'Connor, J. R. and Smilten, J., (1959), 16
- 5) 岡本篤人, 杉山尚宏, 谷俊彦, 伊藤忠, 加納浩之: SiC及 び関連ワイドギャップ半導体研究会第3回講演会予稿 集, (1994), 19
- 6) 杉山尚宏,岡本篤人,堀三郎:SiC及び関連ワイドギャ ップ半導体研究会第2回講演会予稿集,(1993),28
- 7) Stein, R. A. and Lanig, P. : J. Cryst. Growth, 131(1993), 71
- Kanaya, M., Takahashi, J., Fujiwara, Y. and Moritani, A. : Appl. Phys. Lett., 58(1991), 56
- 9) Franck, F. C. : Acta. Crystallogr., 4(1951), 497
- Takahashi, J., Kanaya, M. and Fujiwara, Y. : J. Cryst. Growth, 135(1994), 61
- 村田年生, 夫馬弘雄, 三浦篤志, 加納浩之, 多賀康訓, 橋 本雅文: SiC及び関連ワイドギャップ半導体研究会第2 回講演会予稿集, (1993), 33
- 12) Kikuchi, M., Takahashi, Y., Suga, T., Suzuki, S. and Bando, Y. : J. Am. Ceram. Soc., 75-1(1992), 189
- Nakashima, S. and Tahara, K. : Phys. Rev., B40(1989), 6345
- Nakata, T., Koga, K., Matsushita, Y., Ueda, Y. and Niina, T. : Amorphous and Cryst. Slicon Carbide II, (1989), 26, Springer-Verlag
- 15) Biedermann, E.: Solid State Commun., 3(1965), 343
- 16) Nishino, S., Suhara, H., Ono, H. and Matsunami, H.: J.

Appl. Phys. 61(1987), 4889

- 17) Kuroda, N., Shibahara, K., Yoo, W., Nishino, S. and Matsunami, H. : Ext. Abstr. 19th Conf. Solid State Devices and Mater., Business Center for Academic Societies Japan, Tokyo, (1987), 227
- 18) 鈴木彰, 中島重夫: 第6回SiC研究会予稿集, (1991), V-2
- Shibahara, K., Saito, T., Nishino, S. and Matsunami, H. : IEEE Electron Device Lett., EDL-7(1986), 692
- 20) Fuma, H., Miura, A., Tadano, H., Sugiyama, S. and Takigawa, M. : Ext. Abstr. of the 20th Conf. on Solid State Devices and Mater., (1988), 13
- Fung, C. D. and Kopanski, J. J. : Appl. Phys. Lett., 45(1984), 757
- 22) Fuma, H., Kodama, M., Tadano, H., Sugiyama, S. and Takigawa, M. : Amorphous and Cryst. Silicon Carbide III, (1992), 237, Springer-Verlag
- 23) 原一都, 戸倉規仁, 原邦彦, 夫馬弘雄, 加納浩之: 電子情 報通信学会技術報告, No. SDM92-135(1992), 101
- 24) 宮嶋健, 戸倉規仁, 井ノ下龍介, 原一都, 原邦彦, 許斐一郎, 夫馬弘雄, 加納浩之: SiC及び関連ワイドバンドギャップ半導体研究会第3回講演会予稿集, (1994), 15
- 25) Brown, D. M., Ghezzo, M., Kretchmer, J., Krishnemuthy, V., Michon, G. and Gati, G. : 2nd Int. High Temp. Electron. Conf.,(1994), XI-17
- 26) Tipton, W., Scozzie, C., DeLancy, M. and McGarrity, J. : 2nd Int. High Temp. Electron. Conf., (1994), VIII-29
- 27) 原一都, 戸倉規仁, 宮嶋健, 竹内有一, 原邦彦, 村田年生, 夫馬弘雄, 加納浩之: SiC及び関連ワイドバンドギャッ プ半導体研究会第3回講演会予稿集, (1994), 44

著者紹介

夫馬弘雄 Hiroo Fuma
 生年:1956年。
 所属:半導体デバイス研究室。
 分野:SiC半導体デバイスに関する研究。
 学会等:応用物理学会,MRS会員。

1		
4	57	
	3	
No.	1	

村田年生 Toshio Murata 生年:1963年。 所属:半導体デバイス研究室。 分野:SiC半導体エピタキシャル成長に関 する研究。 学会等:応用物理学会会員。

三浦篤志 Atsushi Miura
 生年:1963年。
 所属:半導体デバイス研究室。
 分野:SiC半導体デバイスのプロセス開発。
 学会等:応用物理学会会員。

 杉山尚宏 Naohiro Sugiyama
 生年:1963年。
 所属:無機材料研究室。
 分野:無機材料の結晶成長に関する研究。
 学会等:応用物理学会,日本セラミック ス協会会員。

谷俊彦 Toshihiko Tani 生年:1956年。 所属:無機材料研究室。 分野:機能性無機材料に関する研究。 学会等:応用物理学会,日本セラミック ス協会,Materials Research Society, American Ceramics Society, Sigma Xi 会員。 Ph. D.。

岡本篤人 Atsuto Okamoto
 生年:1966年。
 所属:無機材料研究室。
 分野:無機材料の結晶成長に関する研究。
 学会等:日本物理学会会員。

加納浩之 Hiroyuki Kano 生年:1947年。 所属:デバイス部。(1995年3月末にて退 社) 分野:SiC半導体,半導体デバイス。 学会等:応用物理学会,電子情報通信学

> 会会員。 工学博士。