

Masahiko Ishii, Yoshiharu Hirose, Toshikazu Satoh, Takeshi Ohwaki, Yasunori Taga

要 旨

低エネルギー(300 - 600eV)の希ガス(Ne, Ar, Xe)イオンを照射することによりSi(100)表面に形 成されるアモルファス層をX線光電子分光法(XPS) を用いて,その場観察した。いずれのイオン種に おいても,ほぼ10¹⁵cm⁻²のドーズ量で1-3nmの厚さ のアモルファス層が形成され,その厚さが飽和す ることが,XPSにより観察された。アモルファス Si(a-Si)層の厚さはイオンの加速エネルギーに比 例して厚くなること,Neイオンにおいて最も厚い a-Si層が形成されることなどもXPSの測定結果から わかった。XPS測定の定量性を確認するため,透 過電子顕微鏡による断面観察を行った。その結果, 飽和したa-Si層厚に対して,XPS測定の定量性を確

認した。さらにドーズ量が低い領域でのアモルフ アス化過程を考察した。その結果,Poisson過程を 考慮した離散的にアモルファス化した領域が形成 されるモデルにより,実験結果が説明された。そ の考察から,1個のイオン照射によりアモルファス 化される領域の大きさが見積もられた。小さなイ オンほど,広がりは小さいが深いアモルファス領 域を生成することが確認された。XPSその場観察 によって,イオン照射によって導入されるa-Si層の 厚さのイオン種,エネルギーおよびドーズ量依存 性が明らかになると共に,a-Si層の形成過程につい ての知見が得られた。

Abstract

The damaged layer formed on a Si(100) surface by low-energy (300-600 eV) rare-gas (Ne, Ar, or Xe) ion bombardment was analyzed *in situ* by x-ray photoelectron spectroscopy (XPS). The XPS analysis showed that an amorphous Si (a-Si) layer with a thickness of 1-3 nm was formed and saturated by a dose of 10^{15} cm⁻² irrespective of the ionic species. It also showed that the thickness increased linearly with the ion energy and that Ne ions formed the thickest a-Si layer. The XPS analysis has been confirmed by transmission electron microscopy. The process of the a-Si layer formation with a small dose of ions can be explained in terms of the Poisson process. As a result, the size of an a-Si region formed by single ion bombardment was estimated. The region, which is supposed to have a cylindrical shape, has a radius of 0.2-0.4 nm and a height of 1-3 nm for each ionic species and energy. *In situ* XPS analysis of the Si surface bombarded with ion beams revealed the growth process of the a-Si layer in addition to the dependence of the thickness on the ionic species, energy, and dose.

キーワード 半導体表面,X線光電子分光法,損傷,アモルファス,希ガスイオン

1.はじめに

希ガスイオン照射は,金属や半導体表面の清浄 化あるいはAuger電子分光法やX線光電子分光法 (XPS)などの深さ分析のためのエッチング方法とし て広く用いられている。これらの応用に際しては, イオン照射により導入される半導体表面の損傷を 正しく理解しておくことが大切であり,これまで にも,多くの研究がなされている1~9)。イオン照射 損傷の評価には,ラザフォード後方散乱分光法1) や中エネルギーイオン散乱分光法2)などのイオン 散乱分光法が一般的に用いられてきたが,数nmの ごく浅い損傷層の評価への適用は困難である。ま た,反射高速電子線回折や走査トンネル顕微鏡^(,)) の適用も報告されているが,これらの手法は表面 の第一原子層の損傷評価に有用であるが、数nmの 深さに及ぶ損傷層の評価には適用できない。しか しながら、近年、希ガスイオンの半導体表面の清 浄化への適用において,その低損傷化の目的から, 1keV以下の低エネルギーイオンや希ガスプラズマ の照射が検討されている10,11)。低エネルギーイオ ンの照射により誘起される損傷は数nmと浅く、従 って,この領域での損傷を定量的に解析する手法 を確立する必要がある。そのような背景のもと 1994年に,表面の化学組成や結合状態を知る有力 な分析手法として広く利用されているXPSを用い て,Si表面の数nmの損傷層を定量的に解析する方 法が, Z. H. Luらによって提案された⁸⁾。Si2pスペ クトルがイオン照射による損傷のためブロードニ ングを起こし,2p1/2と2p3/2ピークの分離が不明瞭 になることは以前より知られているが12,13),彼ら は、このSi2pスペクトルのブロードニングに対し てカーブフィッティングの手法を用いて定量的な 解析を行った。彼らは, 0.25 - 2keVのXeイオンを 照射したSi表面の損傷をアモルファス層とみなし, イオンドーズ量とアモルファス層厚さとの関係を 求めている。この方法は,(1)XPSの検出深さがnm オーダーであることから浅い損傷層の評価が可能 である,(2)イオン照射に伴う損傷層の形成をその 場で、しかも表面の元素組成の変化と同時に計測 できる,といった特徴を有する。しかしながらLu らは,求めたアモルファス層の厚さの妥当性を他

の分析法により確認することは行ってなく,また, Xe以外の希ガスのイオン照射については検討して いない。しかも,彼らは低ドーズ量領域でのアモ ルファス化の過程を吟味していない。そこで我々 は,Ne,Ar,Xeの各希ガスイオンをSi表面に照射 し,XPSを用いた同様の解析を行うとともに,断 面TEM観察により希ガスイオンにより導入された 損傷層の評価を行った。また,アモルファス層形 成に対するXPSによるその場観察結果を考察する ことで,1個のイオンの照射によってアモルファス 化される領域の大きさの見積もりを行った。

2. 実験方法

 2.1 XPSによるアモルファス層の測定方法 高分解能のXPSを用いて単結晶Siを測定すると、
 Si2pピークは、Fig. 1(a)に示すように、2p1/2と
 2p3/2とに分離する。このSi表面に希ガスイオンを 照射すると、これらのピークはブロードニングを 起こし、分離が不明瞭になってくる(Fig. 1(b))。

Fig. 1 Si 2P spectra of a virgin surface (a) and an ion bombared surface (b). In (b), Si 2p spectra of a crystalline (virgin) surface and an amorphized surface used for the curve-fitting are also shown.

これは,イオン照射に伴ってSi表面がアモルファ ス化することにより,Si-Si結合の結合距離や結合 角にばらつきが生じ,その結果,Si2p内核準位の ブロードニングが起きることに起因している¹⁴)。 このブロードニングしたSi2pスペクトルは,Fig. 1(a)の結晶Si(c-Si)のスペクトルとアモルファス化し たSi(a-Si)からのスペクトルとを用いてフィッティ ングすることができる⁸)。フィッティングに際して は,c-Siのスペクトル,a-Siのスペクトルの位置, 強度を適宜変化させ,測定されたスペクトルとの 残差が最小となるようそれぞれのスペクトルの割 合を求める。

今, Fig. 1(b)の挿入図のようにa-Si層がc-Si上に 均一に形成されるとすると, a-Si層の厚さは,

d = λsinαln(*I*"/*I*+1)(1) により与えられる⁸)。ただし,*d*はa-Si層の厚さ,λ はa-Si層中の電子の平均自由行程,αは取り出し角, *I*',*I*はアモルファス層,結晶Siのピーク強度の割 合である。

2.2 実験手順

実験は,XPS装置:PHI-5500Cを用いて行った。 この装置は,単色化されたAl_{Ka}X線源と低エネルギ ー希ガスイオンガンを分析室に備えている。よっ て,イオン照射とXPS測定をその場で行うことが できる。300,400,あるいは,600eVに加速した Ne,Ar,あるいは,Xeのイオンビームを,入射角 を試料表面の法線に対して38°に固定して照射し た。イオンビームのドーズ量は,試料吸収電流を 測定しファラデーカップで補正することにより求 めた。

試料には,およそ1cm角に切り出したn型Si(100) をキャロス洗浄(H₂SO₄:H₂O₂=4:1,10min)の後, HF処理(HF:H₂O=1:100,1min)することにより 表面を水素終端したものを用いた。HF処理後,大 気中を搬送し,XPS装置のロードロックチャンバ に挿入した。HF処理から挿入までの時間は約10分 である。

イオンビームは,試料表面の2×2mm²の領域を 掃引して照射する。XPSの測定領域は,その中心 のおよそ800µmφである。イオンビームの単位時間 あたりのドーズ量(電流密度)は,イオン種,加速 エネルギーによって異なるが,(0.1 – 2.0)× $10^{13} \text{ cm}^{-2} \text{ s}^{-1} \text{ bbc.}$

XPSの測定は,単色化したAl_{Kα}線(1486eV)を用 いて,取り出し角(α)70°で,各イオン照射毎に行 った。測定されたSi2pスペクトルのフィッティン グは,HF処理直後のSi2pスペクトルをc-Siの基準 スペクトルに,4keVのArイオンを1.2×10¹⁷cm⁻²照 射したSiのSi2pスペクトルをa-Siの基準スペクトル に用い,2.1節で述べたように,残差が最小とな るようそれぞれのスペクトルの強度と位置を変化 させて行った。こうして求めたc-Siとa-Siのスペク トル強度の割合から,式(1)を用いてa-Si層の厚さ を求めた。ここで電子の平均自由行程 λ は1.6nmと した¹⁵⁾。各希ガスイオンを10¹²~10¹⁶cm⁻²照射した 際に形成されるa-Si層の厚さを上記の方法により求 めた。

また,XPSによるa-Si層厚さの定量の妥当性を検 討する目的から,400eVのNe,Ar,Xeの各希ガス イオンをそれぞれ8.6×10¹⁵cm⁻²,5.9×10¹⁵cm⁻², 3.8×10¹⁵cm⁻²照射した試料の断面TEM観察を行っ た。試料は,イオン照射後,XPS測定チャンバに 接続された試料処理チャンバにて,Alを約40nm蒸 着しキャップ層を形成した後,大気中に取り出し, TEM観察用にイオンミリングにより加工した。

3. 結果および考察

3.1 イオンドーズ量とアモルファス層厚との 関係

Fig. 2に, Arイオンのイオンドーズ量とa-Si層厚 との関係を示す。この図より, Nずれの加速エネ ルギーにおいても,イオン照射に伴って形成され るa-Si層の厚さは,1×10¹⁵cm⁻²前後のドーズ量で ほぼ飽和することがわかる。このドーズ量は Si(100)表面の原子密度にほぼ等しい。また,600eV の加速エネルギで形成されるa-Si層厚がもっとも厚 く,300eVと400eVではそれ程大きな差はないこと もこの図からわかる。Fig. 3に,加速エネルギー 400eVのNe, Ar, Xeの各イオンビームを照射した 時のドーズ量とa-Si厚との関係を示す。NeやXeに おいてもAr同様,10¹⁵cm⁻²程度のドーズ量で形成さ れるa-Si層の厚さはほぼ飽和することがわかる。 Fig. 4に,各希ガスイオンにおける加速エネルギー と飽和したa-Si層の厚さとの関係を示す。Nずれの 希ガスイオン種においても,飽和したa-Si層の厚さ はほぼ加速エネルギーに比例している。この厚さ の加速エネルギー依存性は,いくつかの報告され ている結果と一致している^{7,8})。また,イオン種別 では,Neで最も厚いa-Si層が形成され,ArとXeと ではほぼ同程度の厚さのa-Si層が形成されることが わかる。この結果は,モンテカルロシミュレーシ ョンから得られる各イオン種の飛程の深さの傾向 と一致する¹⁶)。

3.2 アモルファス層断面のTEM観察

400eVのNe, Ar, Xeの各希ガスイオンを照射し 飽和した厚さのa-Si層が形成されたことがXPSによ

Fig. 2 The thickness of a-Si layers as a function of Ar ion dose for different ion energies.

Fig. 3 The thickness of a-Si layers as a function of ion dose for different ionic species.

をFig. 5に示す。いずれの試料においても, キャッ プ層のAlとc-Siとの間にほぼ均一な厚さのアモル ファス層が観察され,これがイオン照射により形 成されたa-Si層である。写真から読み取ったa-Si層 の厚さをTable 1に示す。界面での凹凸やコントラ ストの不鮮明さなどから,誤差を含むが,写真か ら読みとったa-Si層の厚さは, Fig. 4に示したXPS から求めた値に比べて全体的にやや大きい。この 原因として, XPSのデータから膜厚を求める際に 用いた式(1)中のλの値を小さく見積もりすぎてい る,あるいは,λが2nm程度であるため,2nmを越 えるようなa-Si層をXPSでは薄く見積りすぎてしま う傾向がある,などの理由が考えられる。XPSに よるa-Si層評価の限界を見極める上で,この点はさ らに検討を加える必要がある。しかしながら、 TEMとXPSの両者の誤差を考慮すると,両者の測 定結果はほぼ一致しているということができ、よ

リ測定された試料を断面TEM観察した。その結果

Fig. 4 The saturated a-Si layer thickness as a function of ion energy for different ionic species.

Table 1 Thickness of the saturated a-Si layers determined by TEM images.

Bombardment ion species	Thickness (nm)		
Ne	3.3 ± 0.8		
Ar	2.7 ± 0.4		
Xe	2.4 ± 0.4		

ってここでは、その違いを議論するよりも、XPS による1nmオーダーのa-Si層の定量的な評価の妥当 性が確認されたことを結論する。

3.3 アモルファス層の形成過程

飽和したa-Si層厚の定量性に対して,Luらによ リ提案されたXPSを用いた解析法は妥当であるこ とが確認された。ここでは,a-Si層厚が飽和するま でのa-Si層の形成過程を考察する。Fig. 2, Fig. 3で は,Luらの解析方法に従って,c-Siの上に一様な 厚さのa-Si層が形成されると仮定して,縦軸をa-Si 層の厚さで示した。しかしながら,イオンのドー ズ量が10¹² – 10¹⁴cm⁻²と少ない場合には,Si(100)の 表面原子密度が6.78×10¹⁴cm⁻²であるので,イオン はSi表面に対してごくまばらにしか照射されない ことになる。そのような状況下では,一様な厚さ をもったa-Si層が形成されその厚さが増していくと いうモデルよりも,離散的にアモルファス化した 領域が形成され,それらの増加によって一様な厚 さのa-Si層が形成されるというモデルの方が,より 妥当であると思われる。そこで,次のモデルに従って実験結果の説明を試みる。

イオン照射によるアモルファス層の形成に対す るモデルとして, Fig. 6に示すように,1個のイオ ン照射により円柱形状のアモルファス領域が形成 されドーズ量の増加と共にアモルファス化された 領域の割合が増していく,というモデルが提案さ れている¹⁷⁾。ここで円柱形状は,単に計算を単純 にするためだけの理由で選ばれている。このモデ ルでは,表面がすべてアモルファス領域で覆われ た時一様な厚さのアモルファス層が形成されるこ とになり,観測されたa-Si層厚の飽和はこの状態を 示していると考えられる。またこのモデルによる と,一様なアモルファス層を形成するのに必要な イオンドーズ量と1個のイオン照射によりアモルフ ァス化される円筒領域の大きさとの間に次の関係 があることが近似的に見積もられる。

$D_0 = R_0^{-2}$				(2)
ただし,	D ₀ はa-Si層の	O形成に必要	寝なイオ ン	ンドーズ

Fig. 5 Cross-sectional TEM photographs of Si substrates bombarded with Ne, Ar, Xe ions. The ion energy was 400 eV for each ion bombardment.

Fig. 6 A model of a-Si layer formation.

量 , *R*₀はアモルファス化される円筒領域の底面の 半径。

 $D_0 = 1 \times 10^{15} \text{cm}^{-2}$ とすると, R_0 0.3nmが得られる。

さて,このモデルに従うと,表面でアモルファ ス化される面積はイオンドーズ量に対してPoisson 過程で増加する。イオンドーズ量が*m*(cm⁻²)のとき, 1cm²当たりにアモルファス化される面積の割合*Xa* は,

 $X_a = 1 - \exp\left(-\pi R_0^2 m / 1 \times 10^{16}\right) \dots (3)$ で与えられる。ここでFig.7に,Fig.2のArイオン を照射した場合のドーズ量とa-Si層厚との関係を示 **す**グラフを,縦軸をピーク強度比I '/I ' (saturated) で書き換えたものを示す。I'は測定されたSi2pスペ クトルをカーブフィッティングした結果得られた a-Siのピーク強度であり, I'(saturated)はa-Si層厚 が飽和したドーズ量でのa-Siのピーク強度の平均値 である。Fig. 7中のプロットした点が実験より求め たI'/I'(saturated)であり,実線は R_0 をパラメータ に式(3)をフィッティングさせた結果である。図中 の数字はフィッティングの結果得られたR₀の値で, 300,400,および,600eVのそれぞれの加速エネル ギーのArイオンに対して, 0.29, 0.32, および, 0.22nm の値が得られた。プロットした点と実線と の間の一致はかなりよい。式(3)は,イオンドーズ

Fig. 7 The peak intensity ratio as a function of Ar ion dose for diffrent ion energies. The solid curves are taken from Eq. (3) fitted to experimental data (see text). The values in the figure indicate the radii R_0 (in nm) of a-Si regions determined by the fitting.

量と表面でアモルファス化される面積との関係を 示すものであるが,この式で実験結果をフィティ ングできたことは,イオン照射により離散的にア モルファス化が進行するという上述のモデルの妥 当性を示していると考えられる。Fig.7に示したよ うな図の書き換えと(3)式のフィッティングをNeと Xeについても行い, 各イオン種, 各加速エネルギ ーに対するR₀の値を求めた。これらの値とFig. 4に 示したa-Si層厚の飽和した値とを用いて,1個のイ オン照射でアモルファス化される領域の大きさを 見積もることができる。その結果をFig.8に示す。 図ではモデルに従い,アモルファス化された領域 を円柱で示した。この図より,得られた結果にわ ずかなばらつきはあるものの,加速エネルギーが 大きくなるに従い,1個のイオン照射によりアモル ファス化される領域の断面積は小さくなり,深さ は深くなることがわかる。さらに, Ne, Ar, Xeと イオンの質量が大きくなるに従い,断面積は大き くなり、一方、深さは浅くなることもわかる。

以上示したように,イオン照射によりSi表面は 離散的にアモルファス化されるというモデルによ り,実験結果を説明することができ,さらに,1個 のイオン照射によりアモルファス化される領域の 大きさを見積もることができた。ただし上記考察 では,イオン照射によるスパッタエッチングの効 果は考慮しなかった。今回調べたイオン種,加速 エネルギーの範囲では,スパッタ収率は高々1程度 であり¹⁸⁾,すなわち,10¹⁵cm⁻²程度のドーズ量で

Fig. 8 The sizes of cylindrical a-Si regions as a function of ionic species and ion energies. The figures signed above the columns represent the radii of the columns.

のエッチング量は数Åであり,これは測定誤差の 範囲である。また,上記考察では,取り扱いを簡 単にするため,イオンを試料表面に対して斜めに 入射している影響も考慮しなかった。

4.まとめ

低エネルギー(300 - 600eV)の希ガス(Ne, Ar, Xe)イオンを照射することによりSi(100)表面に導 入されるアモルファス層の形成過程を,XPSを用 いてその場計測した。また,XPSによる損傷層の 解析の妥当性を確認するため,400eVの各希ガスイ オンを~10¹⁵ cm⁻²照射した試料の断面TEM観察を 行った。

XPSの測定から,~10¹⁵cm⁻²のドーズ量のイオン 照射でほぼ均一な厚さのa-Si層が形成されその厚さ は飽和すること,ガス種別では,Neで最も厚いa-Si層が形成されArとXeではほぼ同程度のa-Si層が 形成されること,などがわかった。TEM観察によ り,飽和したa-Si層の厚さに対するXPSの定量性が 確認された。

さらに, a-Si層の成長過程のXPSによる観察結果 を考察した。その結果,イオン照射により離散的 にアモルファス化された領域が形成され,その領 域の積算の結果としてa-Si層が形成されるとするモ デルにより,実験結果を説明することができた。 その考察を通じて,1個のイオン照射によりアモル ファス化される領域の大きさを見積もった。

参考文献

- Bean, J. C., Becker, G. E., Petroff, P. M. and Seidel, T. E. : J. Appl. Phys. 48-3(1977), 907
- Al-Bayati, A. H., Orrman-Rossiter, K. G., Baclheka, R. and Armour, D. G. : Surf. Sci. 237-1/3(1990), 213
- Sumitomo, K., Tanaka, K., Katayama, I., Shoji, F. and Oura, K. : Surf. Sci. 242-1/3(1991), 90
- Murty, M. V. R. and Atwater, H. A. : Phys. Rev. B 45-3(1992), 1507
- Zandvliet, H. J. W., Elswijk, H. B., van Loemen, E. J. and Tsong, I. S. T. : Phys. Rev. B 46-12(1992), 7581
- 6) Bedrossian, P. : Surf. Sci. 301-1/3(1994), 223
- Huang, L. J., Lau, W. M., Tang, H. T., Lennard, W. N., Mitchell, I. V., Schultz, P. J. and Kasrai, M. : Phys. Rev. B 50-24(1994), 18453
- Lu, Z. H., Mitchell, D. F. and Graham, M. J. : Appl. Phys. Lett. 65-5(1994), 552

- 9) Swartzentruber, B. S., Matzke, C. M., Kendall, D. L. and Houston, J. E. : Surf. Sci. 329-1/2(1995), 83
- Comfort, J. H., Gerverick, L. M. and Reif, R. : J. Appl. Phys. 62-8(1987), 3388
- Tsai, W., Delfino, M., Day, M. E. and Fair, J. A. : IEEE Trans. Electron devices 41-8(1994) 1396
- Iwakuro, H., Inoue, T. and Kuroda, T. : Jpn. J. App. Phys. 30-2B(1991), L255
- Delfino, M., Salimian, S. and Hodul, D. : J. Appl. Phys. 70-3(1991), 1712
- 14) Lu, Z. H. and Yelon, A. : Phys. Rev. B 41-5(1990), 3284
- Hochella, Jr., M. F. and Carim, A. H. : Surf. Sci. 197-1/2(1988), L260
- 16) Ziegler, J. H. and Biersack, J. P. : The Stopping and Range of Ions in Solids, (1975), Pergamon Press, New York
- 17) Morehead, Jr. F. F. and Crowder, B. L. : Radiat. Effects 6 (1970), 27.
- Laegreid N. and Wehner, G. K. : J. Appl. Phys. 32-3(1961), 365

著者紹介

石井昌彦 Masahiko Ishii 生年:1960年。 所属:特別研究室。 分野:機能薄膜の物性解析。 学会等:応用物理学会会員。 工学博士。

広瀬美治 Yoshiharu Hirose 生年:1950年。 所属:技術開発研究室。 分野:XPS, AES, SiMSなどを用いた表面 分析。 学会等:日本物理学会,日本化学会,高 分子学会会員。

佐藤敏一 Toshikazu Satoh 生年:1968年。 所属:特別研究室。 分野:機能薄膜の解析。 学会等:日本金属学会会員。

大脇健史 Takeshi Ohwaki
 生年:1956年。
 所属:特別研究室。
 分野:薄膜の表面・界面に関する研究。
 学会等:応用物理学会,日本化学会,日本表面科学会会員。
 工学博士。

多賀康訓 Yasunori Taga
生年:1944年。
所属:特別研究室。
分野:薄膜・表面界面物性研究。機能薄 膜の開発と応用。
学会等:電気学会,表面技術協会, Am.Vac. Soc., IEEE, Mater. Res. Soc.
会員。
工学博士。