39

Recent Developmentsin Eddy Viscosity Modelling of Turbulence
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Abstract

Eddy viscosity modelling is still a
"standard" approach for industrial CFD
applications for turbulent flows despite its
serious deficiencies. Thus, a number of
research studies, including the author's, have

been recently made to improve models of
thiskind. Thisarticle reviews these efforts
and suggests a future direction for tackling
turbulent flows of industrial importance.
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1. Introduction

Turbulenceisan irregular motion in fluid
flows. The various flow quantities thus show
random variation with time and space and
only statistically averaged values are
distinctively discerned. Since exactly

dealing with turbulence with mathematics
has been one of the most notoriously thorny
problems of classical physics, several well
known scientists, who had interestsin
turbulence, did not dare to pursue its physics.
For example, W. Heisenberg, the great Nobel
Prize laureate, did his doctoral research on
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turbulent flows but later changed his major
to quantum theory. A. Einstein, the greatest
Nobel Prize physicist in this century, knew
the difficulty of turbulence and thus did not
gointo its physics. R. Feynman, another
famous Nobel Prize laureate, noted that
turbulence was the most important unsolved
problem of classical physics.

However, the development of modern
computer technology drastically changed this
situation and has provided some
opportunities even for industrial engineersto
challenge turbulent flows using
Computational Fluid Dynamics (CFD). The
major CFD treatments of turbulence can be
classified into four types of approaches:
Eddy Viscosity Model (EVM), Reynolds
Stress Model (RSM), Large Eddy Simulation
(LES) and Direct Numerical Simulation
(DNS). Amongst these, only DNS closely
simulates the actual physics of turbulence,
while industrially interesting schemes are at
present the smplest EVM's because the
others require far more computer resources
than are available for routine work.

Although the eddy viscosity concept
assumes a crude relation between turbulent
guantities, models based on this concept such
as the k-& two-equation model have made
many successful predictions in many flow
fields with numerical stability. The k-€ EVM
Is thus the main scheme for routine work in
present industrial laboratories. Nevertheless,
over the wide range of flow predictions made
over the last two decades, it is now
recognized that conventional EVM's have
severe defects in many complicated flow
fields. Consequently, research studies aimed
at extending the applicability of EVM's have
been highly demanded by industry. In fact,
the continuous research efforts have been
significantly extending the performance of
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EVM's. Therefore, thisarticle particularly
focuses on these recent achievements.

The following section 82 surveys the main
historical establishments related to eddy
viscosity modelling, section 83 summarizes
the recent efforts, then finally, section 84
concludes and suggests a future direction for
the treatment of industrially important
turbulent flows.

2. Historical Foundations

In this section, firstly, major
establishments in eddy viscosity modelling
are surveyed, then a more extended
modelling concept that forms algebraic
Reynolds stress models (ASM's) is
summarized because it is mathematically
very close to EVM's and links some recent
nonlinear eddy viscosity approaches.

2.1 Eddy Viscosity Models

The EVM's are based on an algebraic
expression which represents the Reynolds
stresses appearing in the ensemble averaged
Navier-Stokes equations as unknown
properties. The ensemble averaged forms of
the transport equations for mean velocity of
incompressible flows with constant
properties can be written as:

Continuity,
oU;
; =0 O0ooood@)
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Momentum,
DU __19P 00U 0 oo
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Reynolds stress
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where p and v are, respectively, the density
and the kinematic viscosity of the fluid of
interest. Following Boussinesq[1], the
Reynolds stresses are represented by the



eddy viscosity v; and the strain tensor §; as:
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The k-¢ EVM[2] takes the eddy viscosity
as:

v =cK 000000 (5)

where ¢, is a constant value given by
referring to local equilibrium shear layers.
To obtain v, the transport equations for the
turbulent kinetic energy k and its dissipation
rate € are solved with approximations.
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where D ,is the diffusive transport term of
the variable gwhich is normally modelled
as.
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The coefficients c,; and c,, were given by
referring to the measured rate of decay in
grid turbulence and the local equilibrium
turbulence, respectively. These standard
valueg 3] arelisted on Table 1. This
standard version does not have any near-wall
dependence upon molecular viscosity, so that
wall functiong[4,5] are employed in place of
the no-dlip wall boundary condition.

Table 1 Empirical Constants for the k- EVM.

c, Co Ce Oy o,

0.09 1.44 192 1.0 13
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To take account of the viscous effects,
Jones & Launder[2] (L) first devised alow-
Reynolds-number (LRN) version of the k-
EVM. They implemented the near-wall
viscous effects by damping v, toward awall
with introduction of adamping function, f,,
as.

2
&
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Thisf, function was designed to reduce its
value from unity toward awall. They aso
modified the £ equation with the introduction
of the other damping functions, f; and f,, as:

Dt - p, 4 CetfiPk—Cezfog | o

= 00 (10
Dt k/e (10)

where ¢ isthe isotropic part of € defined as
e=e-2v (%7 )" Thereasonwhy they
chose ¢ rather than ¢ itself isthat € vanishes
to exactly O at awall boundary. Thissimple
boundary condition makes numerical
solutions more stable. The gradient
production term, P,5, was also modelled
using a gradient diffusion hypothesis as:

2
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P =2vv;
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Many versions followed this original work.
Some researchers such as Wilcox[6], for
example, chose a substitute quantity for &.
This model solves amodelled equation for w
(=€/k):

Dw-p,+cuP @-cow?. 000012
Dt k
The coefficients such as ¢, and ¢, were
tuned by referring to the k- model equations
since the w equation was derived by
manipulating the k and € equations.

Patel et al.[ 7] concluded, however,
following systematic comparisons between
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eight LRN models, that an amended version of
the JL model by Launder & Sharma[8] (LS)
was one of the most successful for anumber of
straight thin shear flows. The LS model uses
the following damping functions of aturbulent

Reynolds number R, (= K¢/ ( VE).
0 _
E fu=exp{ (l+R/50)2}
0 =10
E f,=1.0-0.3exp (-R?)

000000 @13)

2.2 Algebraic Reynolds Stress Models
The transport equation of the Reynolds
stressuy; is
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where ;; and g; are, respectively, the
pressure correlation and the dissipation rate
terms of uy;. Thetermsthat contain the
gradient of U, are the transport terms (i.e.,
the convection and the diffusion terms). In
the ASM scheme, the transport of the
Reynolds stresses is approximated in terms
of that of turbulence energy k to reduce the
differential equations for uu; to a set of
algebraic ones. This scheme wasfirstly
introduced by Rodi[9] as:

000000 (15)

where T, is namely the net transport
(convection minus diffusion) of ¢ Since T,
=P, — &, by adapting Eq.(15), one may
rewrite Eq.(14) as:

%+m_%5§%ﬂ%ymmmmma@
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Then, one just needs models for the terms /7
and g;. There are many established models
for [T such as Launder, Reece & Rodi
model[10], and each model forms a different
version of the ASM. However, the basic
model[11] may be )
[T = i3 —C, (P — Edjpkk )
DOoO0doogoa@n
Where the anisotropic stress tensor a; = uy; /
-3 dj and the values of 1.8 and 0.6 are
normal ly used for the coefficients c; and c,,
respectively. In high Reynolds number
isotropic flows, the following treatment is

normally applied.
= &g Oo0oogooas)

Consequently, the algebraic expression for
the Reynolds stress is obtained as:

(1-c2) (Rj—2&iR)
(aa—-1+P/¢€)e '
O0000ad9)
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Since P;; and P, consist of the Reynolds
stresses and the mean velocity gradients, this
algebraic form isimplicit in terms of the
Reynolds stress.

Therefore, ASM's need to solve the
transport equations of k and € with
successive matrix inversions of the implicit
algebraic equation set for the Reynolds
stresses.

3. Toward a New Standard

In this section, the recent novel attempts to
improve the EVM's are discussed especially
focusing on wall detecting parameters and
nonlinear constitutive relations used in the
models. However, due to page limitations,
unfortunately, many of their model equations
are not described, therefore, the referenced
papers should be consulted for more details.



3.1 Near-Wall Modelling

Since the near-wall variation in the local
turbulent Reynolds number R, significantly
changes depending on the bulk Reynolds
number Re as shown in Fig. 1%, finding
another near-wall detector which has general
near-wall characteristics has been the main
concern of modelling near-wall turbulence.

Intheir review, Patel et al.[ 7] emphasized
the necessity to have areasonable near-wall
f,, distribution because none of their cited
models agreed with the data deduced from
severa different experiments (Fig. 2). This
triggered many researchers to modify the
LRN models, suggesting ways of improving
the EVM's. Moreover, since the emergence
of the DNS[12~14], alot of attention has
been given to the near-wall asymptotic
behaviour of each turbulent quantity because
the DNS provided reliable datafor every
process including unmeasurable correlations.

To obtain a reasonable near-wall
distribution of the f, damping function, many
recent versions of the LRN k- EVM[15~17]
have implemented the effects of the
dimensionless wall distance (wall unit):

vy =uyh OOOO00O000Oo(20)

where u, and y are the friction velocity and

i The results of DNS can be treated as almost exact physics.
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Fig. 1  Turbulent Reynolds number in plane channel

flows by DNS[12,13].
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the distance from awall, respectively.
However, one can easily see that none of
these LRN EVM'sis useful to apply for a
flow with arecirculation. In particular, the
use of u, isnot suitable for such aflow case
because it becomes zero at a reattaching
point. Inthis case, thewall unit was
sometimes replaced with Ry (=Vky /v). Abe
et al.[18], however, replaced u, with the
Kolmogorov velocity scale, (vs)” 4 and
devised the parameter:
y*=(ve)yw 000000021

to damp the eddy viscosity in order to obtain
reasonable predictions of backward facing
step flows. (They later extended the model
to anonlinear k-€ model[19]) The parameter
y* was also used in Kawamura &
Kawashimas (KK) LRN k- EVM[20].

Nevertheless, the use of the wall distancey
limits the model's applicability when
considering flow in more complex geometry.
The discussion by Lee et al.[21] using their
DNS results suggested that constructing a
universal model depended on identifying
dimensionless parameters such as the
normalized strain invariant:

S=1VS;jS;/2 Ooooooe2
where 1 is the characteristic time scale
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Fig. 2 Experimentally suggested distribution of the

damping function, f,[7].
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normally given astheratio of kand ¢, kK/e. In
response, in order to obtain the substitute
parameter for the wall distance, Yang &
Shih[22] (YS) devised the parameter R
which consisted of the strain invariant as:

Re k. _ K(ve)
vVS;Sj/2 (k/eg)Vs;S;/2
000000 (23)

=Rt/S.

The use of thisin the dumping function f,, led
to good predictive performance in wall shear
flows with zero or favorable pressure
gradients.

Dueto its general characteristicsin shear
flows as shown in Fig. 3, the strain invariant
has been recently employed as a near-wall
parameter in several other proposals such as
Cotton & Ismael[23] and the nonlinear k-&
EVM of Craft, Launder & Suga[24,25].
Cotton & Ismael later proposed a k-&-S
model[26] coupling with atransport equation
for the strain invariant:

%?:Ds+o.5rs?—%. 00000024

The transport effects of Sgave some
reliability in predicting buoyant flows.
Since the desirable variation in the strain
Invariant as a near-wall parameter is
relatively limited near walls, Craft, Launder

20 T T
Re=2800 ——

5l Re=7000 - |

Fig. 3 Normalized strain invariant in plane channel

flows by DNS[12,13].
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& Suga[27~29] further introduced the stress
invariant A, ( = a;a;) as another near-wall
detector into their nonlinear k-€¢ EVM. Stress
anisotropy is high near awall and its
measure is represented by A, asshown in
Fig. 4, hence, A, can be anear-wall
parameter. The value of A, was obtained by
solving its transport equation:

—DA2=—2&DK+ZED”—2&P|<
Dt k k k

Kk k k K

000000 (25

with proper models for /7, and &;.

Durbin[33] introduced the Reynolds stress
component normal to awall, V%, asa
damping parameter for the eddy viscosity of
the k-€ EVM as:

v=cy’z. 000000000 (26)

The values of v* are obtained by solving its
modelled transport equation. In fact, the
near-wall damping in the eddy viscosity
comes from the blocking effect on the
fluctuating velocity component normal to a
wall-boundary by the existence of the
boundary. In this sense, the boundary which
gives the blocking effect is not necessarily
the wall-boundary. To support this, Fig. 5

AA;

Fig. 4  StressInvariantsin plane channel flows by
DNS[12,13].



shows asimilar damping profile of the eddy
viscosity near the free surface (y/9) of an
open channel flow. Hence, directly
implementing this effect by the use of v in
the damping model has a physically correct
reason. However, the k-e-v* model is only
applicablein aflow parallel to awall
because v is not always normal to awall in
complicated geometry. Furthermore, the use
of v dlonein ascalar variable v, leadsto
severe fundamental inconsistencies since v
is a component of the Reynolds stress tensor
and should not appear in any scalar value.
Thus, it is necessary for a more general
eddy viscosity formulato have a physically
and mathematically correct damping
parameter toward wall or shear-free
boundaries. Accordingly, the author noticed
the flatness parameter of the Reynolds stress
tensor, A (= 1- %(aijaij - ddy)), asa
damping parameter. He thus extended his
work on the k-&-A, model[27~29] to ak-&-A
model[34] by substituting the following A-
transport equation for the A, equation.

DA 9
ot = —@(%A:%Dkk + 28;D;; — 33 a4Dj )

9
—ak ( %A3Pkk + 2g;P;; — 3ayayiP;j)

0.12
01
0.08 |-
0.06 |

vil(dun)

0 02 04 06 08 1
wall symmetry plane
y/ o shear-free boundary

Fig. 5 Eddy viscosity:

o o o, Open-channel[30];

————— , Couette-Poiseuille[32];
——, Channel (Re =2800)[12];
———, Channel (Re =7000)[13].
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—%( %Asnkk + 28T — 3ay@l ;)
+ %( %Asgkk + 236 — 38 )

O00O0o0oaen

Because A isascalar and vanishes at the wall

and shear-free boundaries as shown in Fig.

6, itsintroduction into the damping function

of the eddy viscosity allows oneto form a

physically and mathematically correct

model.

3.2 Nonlinear Eddy Viscosity Modelling

Another important topic in the recent eddy
viscosity modelling is a nonlinear extension
of the (linear) stress-strain relation, Eq. (3).
This approach forms a nonlinear eddy
viscosity model (NLEVM). Note that a sort
of the NLEVM is sometimes called an
explicit ASM due to its optimization process
for the coefficients.

Theorigina linear stress-strain relation
does not produce meaningful differences
between the normal stresses. For example,
in shear flows where only S;, is nonzero, Eq.
(3) leads to isotropic turbulence as:

L= G, = 5= 2k 000000(29
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Fig. 6  Stressflatness parameter:

oo oo, Open—channel [31];
———, Couette-Poiseuillg[32];
—, Channel (Re =2800)[12];
———, Channel (Re =7000)[13].

0000000 R&DODODDOOVol. 33 No.1 (1998.3)



46

while the values of the normal stresses are
very different from one another in actual
flow cases. Thus, the linear model lacks the
capability of predicting anisotropic
turbulence in many industrially important
flows such as turbulence-driven secondary
flows, swirling flows, €tc.

Although the ideas of NLEVM themselves
emerged back in the 70'5]35,36], until
recently, the models of this type were not
widely explored. Many attempts at
developing and using such schemes have
been recently made[37~41]. They all
introduced quadratic termsinto Eq. (3) as.

g =—C, 1§ + or (SiSq _%Sdskléj )
+ G (2454 + 24S0)
+ %TZ ( Q- %-Qlkglkdj )
00000029

where the vorticity tensor, Q; = aJ; / ox —
oU; | ox.

The quadratic c,~c; terms produce
discrepancies between the normal stresses.
These quadratic NLEVM's thus successfully
reproduced turbulence driven secondary
flows, however, they did not have sensitivity
to streamline curvature (including swirl).
Therefore, in order to capture the streamline
curvature effects, Craft, Launder & Suga|24]
further introduced cubic terms as:

a;=—c,15,+ &7 (S —%S«S«dj )
+ 6,7 (S + 2Si)
+ 0ot (24— 3E))
+ C4T3 (SaQ + 54 ) Sq
+ 5T (20 2mSh + SI2m2n
- %SQOn—dej )

+ CGTSSdeS(I + C7T33]Qk|9k|-
0000000 (30)

In fact, the cubic c,~c, terms have sensitivity
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to swirl and streamline curvature. They
afterwards modified their cubic NLEVM
coupling with the effects of A, to correctly
mimic near-wall turbulence[27~29].

Pope[ 36] showed that the generalized
nonlinear stress-strain relation was
mathematically equivalent to an explicit
form of the ASM. He generalized the
nonlinear constitutive relation using the
Cayley-Hamilton theorem and solved a
matrix obtained by substituting the Reynolds
stressesin EqQ. (19) with the constitutive
relation. Although he outlined the procedure
to obtain the coefficients, he was not able to
provide the coefficients generally due to the
complexity of the algebra. Infact, the
generalized constitutive relation includes up
to fifth-order products of strain and vorticity
tensors. Recently, following Pope's
methodology, Taulbeg[42] and Gatski &
Spezia €] 43] proposed elaborate coefficients
for the three-dimensional flows. Their
NLEVM's (explicit ASM's) thus include up
to fifth-order terms. However, the roles and
necessity of fourth- and fifth-order terms
have never been clarified.

Very recently, the author pointed out an
inherent defect in the stress-strain relation
and tried to removeit. In shear-free
turbulence appearing, for example, near the
free surface of an open channel flow, all
strain and vorticity tensor components
vanish. Thelinear and nonlinear stress-strain
relations thus always return isotropic
turbulence there (e.g., al the terms on the
right hand side of Eqg. (30) become 0 in this
case) while the actual turbulence is
significantly anisotropic. Therefore, the
author introduced the following additional
term A; composed of the gradient of the
stress flatness parameter A into the cubic
stress-strain relation: Eqg. (30).
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Since the distribution of A has a steep
gradient near the shear-free boundary as
shown in Fig. 6, this additional term does
produce anisotropy of turbulence there. The
author showed its usefulness for capturing
shear-free turbulence combining it with the
k-&-A three equation NLEVM[34].

3.3 Comparisons of Model Performance

This subsection displays the near-wall
performance of typical linear and nonlinear
EVM'slisted in Tables 2 and 3. All the
models listed, except for the W92[44], the
SA[45] and the ARG[46] models, have

Table 2 Linear EVM's.

Model transport near-wall
variables parameters

LS: Launder & Sharma(1974)[8] k, € R
W92: Wilcox(1992)[44] k, w R

YS: Yang & Shih(1993)[22] k € R, S

RM: Rodi & Mansour(1993)[17] k & R,y

KK: Kawamura& Kawashima(1994)[20] k, & R.,Y

Cl: Cotton & Ismael(1994)[26] k&S R,S

Table 3 Nonlinear EVM's.
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already been discussed or referred to. The
W92 model is the latest version of the linear
k-comodel. Among the nonlinear EVM's,
the SA and the ARG models are,
respectively, ak-£ model and a k- model
based on the nonlinear stress-strain model of

Gatski & Speziale[43].

Fig. 7 compares the predicted turbulent
shear stress distributions with the DNS13]
data near thewall. All the models reproduce
the DNS results quite well, though the
profile by the W92 model distinctively
deviates from the datain the region y*<20.

The predicted turbulence energy
distributions shown in Fig. 8, however,
display an interesting fact. The recently
proposed nonlinear SA and ARG models

Linear EVM's

06 | Kim(1989),
LS
04

02 cl

S

o

NLEVM's

Kim(1989),
CLS
ARG,

—uv*

AKN,
MK,
NY,

100

Model transport near-wall
variables parameters

NY: Nisizima& Yoshizawa(1987)[38]  k, & R,y
MK: Myong & Kasagi(1990)[40] k & R, Y
SA: Spezide & Abid(1995)[45] k, & R. R
ARG: Abid, Rumsey & Gatski(1995)[46] k, w R
AKN: Abe, Kondoh & Nagano(1995)[19] k, € R,Y
CLS: Craft, Launder & Suga(1995)[29] k, & A, R,SA,
Suga(1997)[34] KEA R,A

Fig. 7 Turbulent shear stress.
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predict very similar profiles to that of the
rather dated NY model and they are poorer
than that of the 24-year-old LS model.
Except for them, the recent versions of
EVM's have shown quite successful
performance. In fact, many of them arein
excellent agreement with the DNS.

Since modelling the € (or w) equationis
much more difficult than modelling the k
equation, thus many of the predicted €
distributions poorly accord with the DNS
dataasseenin Fig. 9. Nonetheless, the
result of the nonlinear CLS model shows
quite excellent agreement with the DNS, and
those of the linear KK and the nonlinear
AKN models are also fairly acceptable.

Another important feature of a LRN model

Linear EVM's

NLEVM's

+ e R
K | Kim(1989), e
2t 4 cLs *

Fig. 8 Turbulence energy.
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is grid dependency on the predicted results.
Fig. 10 shows the grid dependency on the
predictive performance of the mean velocity
in the pipe flow measured by Laufer[47].
The solid lines noted as 100% are the results
with afine enough grid whose first grid node
islocated just under unity of the wall unit
(y,'<1.0). Thelines noted as x% are the
results using a grid whose grid node density
normal to thewall isx% of that of the fine
enough grid. Obviously, the LS model is
very sensitive to the grid density and many
of the other LRN models need at least a 50%
grid node density of the fine enough grid.
(Thefirst grid node'sy” of this 50% grid is
about 2.0: y,"~2.0.) The nonlinear CLS, MK
and NY models, however, show equivalent

Linear EVM's
0.3

0.25

Kim(1989), o
LS
0.2

g 015
o1

0.05

0 20 40 60 80 100

NLEVM's
0.3 ‘ ‘

0.25
02\ [
& 015 |
01|

0.05

Fig. 9 Turbulence dissipation rate.



performance even with the 40% grid
distributed from y,"~4.0. On the whole, it
can be said the CL S model shows the best
performance in the models compared in Fig.
10 in terms of the predictive accuracy and
the grid sensitivity.

Fig. 1100 13 show the predicted near-wall
turbulent intensities by the NLEVM's
compared with the DNS[13] data. The CLS
model clearly demonstrates the best
performance while the other models do not
successfully mimic the stress anisotropy.

The near-wall performance of the author's

Re=45000; Linear EVM’s
25 : : ;

U+

y+

Fig. 10 Mean velocity distributions:
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k-&-A three equation NLEVM is comparable
to that of the CL S (k-&-A,) model though it
has not been apparently shown. As
mentioned in 83.2 and clearly shown in Fig.
14, however, the author's k-e-A NLEVM can
capture stress anisotropy near the free
surface while the CLS model cannot. This
model performance of the k-&-A model is
believed to be very useful if the model is
used to calculate heat and mass transfer
through a shear-free interface which is one of
the key phenomena of the environmental

I SSUes.

Re=45000; NLEVM’s
25 ‘ ‘ ‘

Symbols, Expt.[47]; ——, 100%; — ——, 50%; ———, 40%; -+ , 35%.
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4 Conclusions

The following aspects may be summarized
through this review covering the recent
research works on the eddy viscosity
modelling of turbulence.

1. Until recently, the wall distancey was
often used in the low-Reynolds-number eddy
viscosity models, while the use of y limited
the model's applicability.

Channel, Re=7000; CLS & MK

3
F
=]
+
=
g
>
Fig. 11 Turbulent intensities:
Symbols, DNS[13];
——, CLY29]; ——— MKJ4Q].
Channel, Re=7000; AKN & NY
3 T T T T
¥
j}
+
H
g
>

Fig. 12 Turbulent intensities:
Symbols, DNS[13];
—— , AKN[19]; ——— NY[38].
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2. Many researchers have started to find
genera local parameters for detecting wall
effects. The proposed near-wall invariant
parameters so far are the strain invariant S,
the stressinvariant A, and the stress flatness
parameter A. Although they require solving
their transport equations, the models
including their effects showed encouraging
results.

3. The use of nonlinear terms in the stress-

Channel, Re=7000; ARG & SA

3 w ‘ ‘ ‘
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&
'S <
<
L o 7
+ 2 .
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y o e
2
+
> 1 - /2 A N A A 4
T N
A A
ko3 A
H A
off *
.':A
/o
0

Fig. 13 Turbulent intensities:
Symbols, DNS[13];

——, ARG[46]; ———, SA[45].
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Fig. 14 Turbulent intensities in an open channel flow:
symbols, DNS[3]] ;
——,CLY29]; ———, k-&-A model[34].



strain relation is essential to predict complex
strain fields. Moreover, the cubic terms are
necessary to mimic streamline curvature and
swirl effects.

4. The combined effects of the new local
near-wall parameters and nonlinear stress-
strain relations have significantly extended
performance of the eddy viscosity scheme.

In particular, the use of A has extended the
applicability of the eddy viscosity model
toward capturing shear-free turbulence which
isvery important for environmentally
oriented issues.

5. Overdl, it may be concluded that the
nonlinear k-&-A three equation model isthe
most promising scheme in the eddy viscosity
models of turbulence.

In the very near future, the author believes
that the standard k-& model in industrial
applications will be replaced with the
recently developed low-Reynolds-number
nonlinear eddy viscosity models.

To achieve the full potential of the eddy
viscosity modelling, however, further
attention is expected for optimizing the
transport equation for €. Since the rapid
development of DNS will be providing much
more detailed data for the modelling, the
existing too empirically modelled &
equations will soon be replaced.
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