

Kazuo Ohtsuka, Yasunori Taga, Osamu Tabata

要 旨

16×16画素のモノリシック焦電型赤外線イメージセンサを開発した。本イメージセンサは, エレクトロスプレイ法によるPVDF焦電膜,埋め込みチャネルMOSFETによる低ノイズ検出デ バイス,マイクロマシニングによる4本のビームで支持されたメンブレン構造の熱絶縁構造を特 徴とする。

検出部サイズ75μm角,チョッピング周波数55Hzのイメージセンサにおいて,電圧感度6600 V/W,比検出能 $1.6 \times 10^7 \text{ cmHz}^{1/2} \text{W}^{-1}$ が達成され,黒体炉開口部の熱画像を得る事に成功した。 感度バラツキ,ノイズ,オフセット電圧に課題が残るが,モノリシック焦電型赤外線イメージ センサ実現に見通しを得た。

Abstract

A 16 × 16 monolithic pyroelectric infrared image sensor has been developed. This image sensor utilizes an electro-spray (ESP) deposited polyvinylidene fluoride (PVDF) thin film as a pyroelectric material, a buried channel MOSFET as a low noise detection device, and a micromachined four-beamsupported membrane as a thermal isolation structure. A voltage sensitivity of 6600 V/W and a detectivity of 1.6×10^7 cmHz^{1/2}W⁻¹ have been realized with a sensing area of 75 μ m \times 75 μ m at a chopping frequency of 55 Hz. A thermal image of the circular window of a black body furnace has been successfully obtained. These results offer the promising prospect of a monolithic pyroelectric IR image sensor, although the uniformity in voltage sensitivity, noise and offset voltage still remain to be improved.

焦電,赤外線,センサ, PVDF, マイクロマシニング キーワード

1.はじめに

赤外線センサには,赤外線のフォトンエネルギ ーにより励起されるキャリアによって生じる導電 率の変化,あるいは光起電力を検出する量子型と, 黒体放射に基づく赤外線の放射エネルギー吸収に よる温度変化を検出する熱型がある。一般に量子 型は熱型に比べ高感度であるが,波長依存性を持

ち,極低温の冷却が必要という特徴を持つ。一方 熱型は量子型に比べ感度は劣るが,波長依存性を 持たず,冷却不要という特徴を持つ。冷却不要な 熱型は,量子型に比べ低コスト化が期待できるた め,自動車,家電等への幅広い応用が期待され, 近年活発な研究開発が進められている。中でも焦 電センサは高感度化が期待できるため,熱型セン サでは有力な候補である。しかし, MOSデバイ

スが形成されたシリコン基板上に高い焦電係数と 均一性を持つ焦電膜を成膜することが困難であっ たため,熱画像表示可能な高感度で大規模なモノ リシック焦電型赤外線イメージセンサは実現され ていない^{1~4)}。モノリシック化により,チップの 低コスト化,低ノイズ化,高機能化,大規模2次 元アレイセンサの実現等が期待できる。

我々は,薄膜で形成した熱絶縁構造上にPVDF焦 電膜をエレクトロスプレイ(ESP)法により成膜し, これをCMOS検出回路と集積化した焦電型赤外線 センサを提案している。この概念に基づき,400µm 角のシリコン窒化膜メンブレンを検出部とする単 体センサを試作し,雑音等価温度差(NETD)0.1℃ を達成した⁵)。

イメージセンサの実現には,NETDを同程度に 保ったまま検出部サイズを小型化する必要があ る。しかしNETDは受光部から基板への熱コンダ クタンスに比例し,受光面積に反比例するため, 従来と同一な熱絶縁構造を単純に小型化すれば, 熱コンダクタンスは増加し,受光面積が減少する ためNETDは増加してしまう。

本稿では,新規熱絶縁構造と材料変更により, 検出部サイズの小型化と熱コンダクタンスの低減 に成功し,熱画像表示を実現した,検出部サイズ 75µm角,256画素のモノリシック焦電型赤外線イ メージセンサについて報告する^{6,7}。

2.設計と作製

2.1 構成

センサ1 画素の断面構造をFig. 1 に示す。75μm 角の検出部とMOSFET検出回路を持つセンサエレ

Fig. 1 Cross-sectional structure of the sensing cell.

豊田中央研究所 R&D レビュー Vol. 33 No. 1 (1998. 3)

メントがSi基板上に集積化される。試作したイメ ージセンサはセンサ構造,検出回路,焦電膜成膜 について以下に示す特徴を持つ。

2.2 センサ構造

イメージセンサには単体センサの小型化と,高感 度化が必要となる。この相反する条件を満たすには 受光部の熱コンダクタンス低減,つまり熱の逃げに くい構造にすることが有効なため,センサ構造,材 料の観点からセンサ設計の見直しを行った。

センサ構造には,限定された面積内で,大きな 受光部と高い熱絶縁性を合わせ持つ事が要求され る。そこで,新規センサ構造として,Fig.2に示 すマイクロマシニングによるビーム支持メンブレ ン構造と呼ぶ形状を用いた。この構造では, 59µm角の受光部が,幅4µm,長さ59µmの4本の ビームにより支持される。

材料に関しても,支持メンブレン材料にシリコ ンプロセスで広く用いられるUn-doped Silicate Glass (USG:プラズマCVDによるノンドープのシリコン 酸化膜の熱伝導率($1.2 \times 10^{-2} \operatorname{Wcm}^{-1}\operatorname{K}^{-1}$)は従来我々 のセンサでメンブレンとして用いたシリコン窒化 膜の熱伝導率($1.8 \times 10^{-1} \operatorname{Wcm}^{-1}\operatorname{K}^{-1}$)に比べ,約1桁 小さい。Tiの熱伝導率($2.2 \times 10^{-1} \operatorname{Wcm}^{-1}\operatorname{K}^{-1}$)も従来 我々のセンサで下部電極として用いたAlの熱伝導

Fig. 2 Sensor structure (four-beam-supported membrane structure).

率(2.37 Wcm⁻¹K⁻¹)に比べ約1桁小さく,加えてAl と異なり受光部と基板の分離を行うアルカリ系Si 異方性エッチング液に対する耐性を持っている。 なお,TiNは接触抵抗低減のために成膜している。

2.3 検出回路

イメージセンサ1画素内の等価回路図をFig.3に 示す。PVDF焦電膜で発生する電荷をソースフォ ロワ回路によりインピーダンス変換し,電圧とし て取り出している。この検出回路は以下の3つの 特徴を持つ。

第一に,埋め込みチャネルMOSFETによる回路 構成。イメージセンサからの出力は約4.0Vのオフ セット電圧を持ち,チョッピング周波数に同期し たµVオーダーの交流信号である。この様に出力 が微小なため,センサS/N,つまり高感度化同様, 低ノイズ化が重要である。本検出回路では,検出 回路を構成するMOSデバイスの1/fノイズ低減を 狙い,埋め込みチャネルMOSFETで構成する。

第二に,保護ダイオードの接続。ESP成膜は後 述する様に,8~15kVの強電界中でのプラス電荷 を持つPVDF液滴の噴霧であり,液滴の持つプラ ス電荷のチャージアップにより,検出MOSFETの ゲート酸化膜が絶縁破壊される。本検出回路では ゲートとGND間にダイオードを接続し,成膜中 GNDに接地しESP成膜による電荷蓄積を防ぐ。

第三に,差動出力によるオフセット電圧の除去。 チップからの出力は前述の様にオフセット電圧を 持つ。熱画像表示用の信号処理を行うには,この オフセット電圧を高速に除去する必要があり,本

なお,各画素からの信号は,アレイ周辺に作製 した読み出し用ディジタル回路により,順次読み 出される。

2.4 焦電膜成膜

モノリシック可能な焦電膜としてエレクトロス プレイ法によるPVDF焦電膜を用いる⁸)。ESP成膜 装置の概観図をFig.4に示す。ジメチルフォルム アミド(DMF)等の有機溶媒中の0.2%のPVDF溶 液は,ニードルと基板間の8~15kVの強電界の印 加によりチャージされる。チャージされたPVDF 溶液の液滴は,電界によってニードルから基板ま で移動する。基板までの輸送工程で,殆どの溶媒 は窒素により蒸発され,残った溶媒とPVDFポリ マーは基板上の電極上に成膜される。成膜と同時 にPVDF中の双極子は電界により基板上に垂直に 配向されるため,導電性を持つ任意基板の任意電 極上に,ポーリングを必要とせず,焦電性・均一 性とも良好なPVDF薄膜が成膜できる。

2軸移動機構を持つ成膜装置により,2cm²の領 域において,4nCcm⁻²K⁻¹の焦電係数を持つPVDF 薄膜が±5%以内の均一性でワンステップで基板 上に直接成膜できている。

2.5 プロセス

プロセスはCMOSプロセスによる検出回路作製後,センサ部を作製するpost-CMOSプロセスであ

P3s, P3r: Select MOS

Fig. 3 Equivalent circuit of a sensing cell.

Fig. 4 Schematic structure of an ESP deposition apparatus.

D4s: Protect Diode

る。CMOSプロセス以後のプロセスフローをFig. 5に示す。

(1)センサ支持膜となる厚さ700nmのUSG膜をプ ラズマCVDにより成膜し,Alまでのコンタクトホ ールをフォトリソグラフィ,RIEにより加工する。

(2)下部電極となる厚さ100nmのTi/TiN複合膜を スパッタにより成膜し,フォトリソ,RIEにより パターニングする。続けて,同様の方法で基板と 受光部の分離を行うSi異方性エッチング用のエッ チホールを加工する。

(3)熱絶縁構造がエチレンジアミンピロカテコー ル(EDP)水溶液を用いたSi異方性エッチングに より形成される。

(4)PVDF焦電膜をTi下部電極上にESP法により 成膜する。

(5)赤外線光の吸収膜でもある金黒上部電極をア レイ部上に蒸着により成膜する。なお,金黒は波 長2~20µmの赤外光を90%以上吸収する。

PVDFと金黒の成膜中,ボンディングパッドを

- (b) Ti / TiN sputtering, patterning and Etch hole RIE.
- (c) Anisotropic etching (EDP).
- (d) PVDF pyroelectric film deposition.
- (e) Au-black evaporation.

Fig. 5 Process flow of the image sensor.

保護するためにメタルマスクを用いている。

アルカリ系Si異方性エッチング液に対する耐性 を持つTiを下部電極材料に用いることで,下部電 極パターニング後にSi異方性エッチングを行うこ とを可能にし,熱コンダクタンスの低い4本ビー ム支持メンブレン構造を実現できている。

加えて,Ti下部電極成膜時に,既に同一基板上 に作製されている検出回路のAIボンディングパッ ド表面もTiで覆うことにより,受光部の分離を行 うEDP水溶液からAlを保護する。TiはAl同様優れ たボンディング性を持つため,除去の必要がない。

ビーム支持メンブレン構造は構造強度および剛 性が低いため,USG,Tiの持つ内部応力により容易 に変形・破壊する。ビーム支持メンブレン構造を 平坦に歩留まり良く作製するため,USG,Tiの応力 制御と形状パラメーターの最適化を行っている。

3.結果と考察

3.1 センサ構造

EDP水溶液により基板から分離された検出部の SEM写真をFig.6に示す。USG,Tiの応力制御と 形状パラメーターの最適化により,高い熱絶縁性 を持つビーム支持メンプレン構造を平坦に歩留ま り良く作製できている。USG膜厚は700nm, Ti/TiN複合膜の厚さは100nmである。

3.2 単体センサ特性

焦電出力は,熱源である黒体炉,可視光をカッ トする光学フィルタ,メカニカルチョッパ,FFT アナライザを用いて測定した。センサは検出部の 熱コンダクタンス低減のため,約1Torrの真空封 止を行った。真空封止により,キャビティ内の空

Fig. 6 A SEM photograph of a sensing element.

豊田中央研究所 R&D レビュー Vol. 33 No. 1 (1998. 3)

気の影響が無くなり,電圧感度は約5倍に増加した。この様なマイクロ構造の熱型センサでは真空 封止は不可欠である。

Fig. 7に単体センサの電圧感度のチョッピング 周波数依存特性を示す。約30Hzまで電圧感度の ピーク値が伸び,その後,周波数に比例して低下 する。チョッピング周波数10Hzで,10000V/Wの 最大電圧感度が得られた。電圧感度の立ち下がり は熱時定数が支配しており,本結果から熱時定数 5.3msecが算出された。

Fig. 8に焦電膜ノイズ(V_{NS}),保護ダイオードノ イズ(V_{ND}),ソースフォロワ回路ノイズ(V_{NZ})の 周波数特性を示す。全ノイズ(V_N)は下記の様に, これらの二乗平均である。

$$V_N^2 = V_{NS}^2 + V_{ND}^2 + V_{NZ}^2$$
(1)

イメージセンサのチョッピング周波数は55Hz としており,55Hzでのノイズはそれぞれ 1.7µVHz^{-1/2},0.8µVHz^{-1/2},0.7µVHz^{-1/2}であった。 この結果より,ノイズは焦電膜が72%,保護ダイ オードが16%,ソースフォロワ回路が12%支配し ており,低ノイズ化には焦電膜の低ノイズ化が重 要であることが明らかになった。

Fig. 9にセンサのS/Nを表す比検出能の周波数特 性を示す。チョッピング周波数40Hzで最大値 2.4×10⁷cmHz^{1/2}W⁻¹が得られた。

単体センサの性能指数をTable 1にまとめる。

Fig. 7 The frequency dependance of voltage sensitivity.

 3.3 電圧感度,ノイズ,オフセットのバラ ツキ

イメージセンサに関して,電圧感度,ノイズ, 差動出力後のオフセット電圧の均一性を評価した。Fig. 10に,イメージセンサのチョッピング周

Fig. 8 The frequency dependance of noise power.

Fig. 9 The frequency dependance of detectivity.

Table 1Characteristics of the single sensor.

$75 \times 75 \ (\mu m^2)$
700 (nm)
4 ($nCcm^{-2}K^{-1}$)
10000 (V/W)
$2.4 \times 10^7 (\text{ cmHz}^{1/2}\text{W}^{-1})$
5.3 (msec)

豊田中央研究所 R&D レビュー Vol. 33 No. 1 (1998.3)

波数である55Hzでの電圧感度のバラツキを表す ヒストグラムを示す。評価したイメージセンサで は,256画素中38画素(15%)の不良画素があった。 電圧感度の平均値は6607V/W,標準偏差1254V/W であった。電圧感度バラツキはソースフォロワ回 路と焦電膜の特性バラツキによるものである。画 像表示は,感度バラツキデーターより補正係数を 乗じた処理を行い,不良画素に対しては周辺画素 のデーターより補間した。

Fig. 11に, 任意25画素のノイズバラツキを表す ヒストグラムを示す。ノイズの平均値は 1.33µVHz^{-1/2},標準偏差0.1255µVHz^{-1/2}であった。

Fig. 12に,差動出力後のオフセット電圧のバラ ツキを表すヒストグラムを示す。

ESP成膜前は平均値7.5mV,標準偏差5.1mVで あったが,ESP後は平均値108.2mV,標準偏差 16.3mVと平均値,標準偏差とも増加した。これ は,ESP成膜による検出回路の特性変化と,焦電 膜の発生する電荷の影響である。

電荷に関しては, ESP成膜後の熱処理で低減さ せれるが,検出回路の特性変化については,原因 不明でクリアできていない。この様に差動出力に よるオフセット電圧除去が不十分なため,交流カ ップリングによりオフセット電圧を除去してお り,信号処理時間を増加させている。

3.4 イメージセンサ特性

Fig. 13に金黒上部電極成膜前のイメージセンサ

チップ写真を示す。チップサイズは $4 \times 4 \text{mm}^2$ で あり,75µm角の検出部が150µmピッチで256画素 (16×16)のアレイを構成する。アレイ周辺に読 み出し用ディジタル回路を作製している。Fig.14 に試作したカメラ部を示す。波長2µm以下をカッ トする光学フィルタ,f値1.0の赤外線用レンズ, メカニカルチョッパ,真空封止したセンサチップ, 低ノイズアンプにより構成される。Fig. 15に本セ ンサにより得られた円形の黒体炉開口部の熱画像 表示例を示す。青が低温,赤が高温を表し,黒体 炉の温度変化に応じて熱画像が変化することがわ かる。イメージセンサ特性をTable 2にまとめる。 検出部サイズ75µm角, 画素数256画素, チョッピ ング周波数55Hzのイメージセンサにおいて,電圧 感度6600V/W,比検出能1.6×10⁷ cmHz^{1/2}W⁻¹, NETD0.15°Cを達成した。なお,NETDの算出は, 光学系の損失は無く,周波数帯域∆f=1Hzの条件 を用いた。

4.おわりに

ESP法によるPVDF焦電膜を用いて,検出部サ イズ75µm角,256画素(16×16)のモノリシック 焦電型赤外線イメージセンサを試作した。チョッ ピング周波数55Hzにおいて,電圧感度6600V/W, 比検出能1.6×10⁷cmHz^{1/2}W⁻¹,NETD0.15°Cを達成 し,黒体炉開口部の熱画像を得る事に成功した。

Fig. 11 Distribution of noise power.

Fig. 10 Distribution of voltage sensitivity.

電圧感度のバラツキ,ノイズ,オフセット電圧 等改善を必要とする課題は残るが,モノリシック 型の焦電型赤外線イメージセンサ実現の見通しを 得た。

Fig. 12 Distribution of offset voltage.

Fig. 13 A photograph of the image sensor.

Fig. 14 A photograph of the prototype camera.

Fig. 15 A thermal image of the circular window of a black body furnace.

Table 2Characteristics of the PVDF thin film IR image
sensor (temperature of sensor is 300K).

Sensor size	$75 \times 75 \ (\mu m^2)$
Elements number	256 (16 × 16)
Chopping frequency	55 (Hz)
Rv	6600 (V/W)
D*	$1.6 \times 10^7 \text{ (cmHz}^{1/2}\text{W}^{-1}\text{)}$
NETD	0.15 (K)
Thermal time constant	5.3 (msec)

参考文献

- Munch, W. V., Nagel, M., Rinner, M. and Wohl, G. : "P(VDF/TrFE) Copolymerafilms for the Fabrication of Pyroelectric Arrays", Sensors and Actuators A, 37-38 (1993), 365 ~ 369
- Munch, W. V., Nagel, M., Wohl, G., Ploss, B. and Ruppel, W. : "A 3 × 3 Pyroelectric Detectors Array with Improved Sensor Technology", Sensors and Actuators A, 41-42(1994), 156 ~ 160
- Kohler, R., Neumann, N. and Hofmann, G. : "Pyroelectric Single-element and Linear-array Sensors Based on P(VDF/TrFE) Thin Films", Sensors and Actuators A, 45(1994), 209 ~ 218
- Setiadi, D., Sarro, P. and Regtien, P. P. L. : "A 3 × 1 Intagreted Pyroelectric Sensor Based on VDF/TrFE Copolymer", Transducers'95, (1995), 644 ~ 645
- Asahi, R., Sakata, J., Tabata, O., Mochizuki, M., Sugiyama, S. and Taga, Y. : "Integrated Pyroelectric Infrared Sensor Using PVDF Thin Film Deposited by Electro-spray Method", Technical dig. of The 7th int. conf. on solid-state sensors and actuators (Transducers'93), (1993), 656 ~ 659
 - 著者紹介

- Fujitsuka, N., Sakata, J., Miyachi, Y., Mizuno, K., Ohtsuka, K., Taga, Y. and Tabata, O. : "Monolithic Pyroelectric Infrared Image Sensor Using PVDF Thin Film", Technical dig. of The 15TH Sensor symp., (1997), 133 ~ 136
- Fujitsuka, N., Sakata, J., Miyachi, Y., Mizuno, K., Ohtsuka, K., Taga, Y. and Tabata, O. : "Monolithic Pyroelectric Infrared Image Sensor Using PVDF Thin Film", Technical dig. of The 9th int. conf. on solid-state sensors and actuators (Transducers'97), (1997), 1237 ~ 1240
- Sakata, J. and Mochizuki, M. : "Preparation of Organic Thin Films by an Electrospray Technique I. Crystal Forms and Their Orientation in Poly(vinylidene fluoride) Films", Thin Solid Films, 195(1991), 175 ~ 184

大塚一雄 Kazuo Ohtsuka
生年:1963年。
所属:機電技術課。
分野:計測,信号処理におけるハード・
ソフトウェア開発。
学会等:自動車技術会会員。

藤塚徳夫 Norio Fujitsuka 生年:1967年。 所属:機能デバイス研究室。 分野:シリコンマイクロセンサ,マイク ロマシニング。 学会等:電気学会会員。

多賀康訓 Yasunori Taga 生年:1944年。 所属:第1特別研究室。 分野:薄膜物性,表面・界面物性。 学会等:表面技術協会,Am. Vacuum Soc., IEEE, Mater. Res. Soc.会員。 工学博士。

坂田二郎 Jiro Sakata 生年:1954年。 所属:機能デバイス研究室。 分野:薄膜物性評価・制御。 学会等:応用物理学会,日本化学会会員。 工学博士。

田畑 修 Osamu Tabata 生年:1956年。 所属:立命館大学理工学部機械工学科。 分野:マイクロ・ナノ加工技術とマイク ロシステムへの応用に関する研究。 加工(シリコン異方性エッチング, 放射線応用など),物性評価(薄膜 の機械的物性評価など),マイクロ システム応用(加速度センサ,マ イクロ化学分析システムなど)。 学会等:日本機械学会,電気学会,IEEE 会員。 1998年日本ME学会科学新聞・研究 奨励賞受賞。 1992年電気学会論文発表賞受賞。

1993年R&D100選受賞。

工学博士。

宮地幸夫 Yukio Miyachi 生年:1954年。 所属:パワー高周波デバイス研究室。 分野:パワーデバイスの研究開発。

水野健太朗 Kentaro Mizuno 生年:1966年。 所属:機能デバイス研究室。 分野:センサ用アナログCMOS ICの設計。