抵抗変化型NO_xセンサ

研究報告 Resistive-type Nitrogen Oxides Sensor

山田靖,妹尾与志木, 増岡優美, 山下勝次

Yasushi Yamada, Yoshiki Seno, Yumi Masuoka, Katsuji Yamashita

地球環境を保護するために,自動車や工場から 排出される有害ガスを低減させる必要がある。そ れらの有害ガス中で特に窒素酸化物 (NO_x) は,低 濃度でも人体や動植物に悪影響を及ぼすために, 一層の低減が必要となっている。その1つの方法 として,小型で安価なNO_xセンサを用いて,NO_x 発生源の排ガス中に含まれるNO_x濃度を連続モニ タすることにより,NO_x排出量を最少に制御する システムが考えられる。

排ガス管に直接取り付けるセンサとしては,メ インテナンスフリーでかつ耐熱性を要求されるた め,耐熱性機能材料である酸化物半導体を用いた 抵抗変化型や,固体電解質を用いた起電力型及び 電流型が候補になる。この中で,酸化物半導体を

旨

要

用いた抵抗変化型は,その構造が簡単であること から,小型かつ安価という利点がある。

そこで,耐熱性が期待されるスピネル型結晶の Zn₂SnO₄薄膜を用いた抵抗変化型NO_xセンサを試 作し,そのNO_x検出特性を検討した。多元RFス パッタリング法により成膜したSbをドープした Zn₂SnO₄薄膜は,1000 の熱処理後にスピネル単 相の結晶構造を示し,それを用いたNO_xセンサは, 600 において0~300pm程度の低濃度NO₂に対 して良好な検出特性を示した。また,実用上重要 である共存ガスの濃度変化や周囲温度の変化等が NO_x検出特性に及ぼす影響についても調べた。さ らに,この薄膜の還元性雰囲気に対する耐熱性を 調べ,その限界を明らかにした。

Abstract

Harmful gases, such as nitrogen oxides, carbon monoxide and hydrocarbons, cause serious atmospheric pollution; it is important to reduce the emission of these gases from automobiles and plants. For reducing particulary nitrogen oxides, a solid-state nitrogen-oxides sensor attachables to exhaust systems is urgently demanded.

Resistive-type nitrogen oxides sensors utilizing a metal oxide semiconductor are advantageous because they are compact and inexpensive. A Sb-doped Zn_2SnO_4 thin film with spinel-type structure which was deposited by sputtering from multi-targets of constituent metals, followed by annealing at 1000°C, showed fairly good nitrogen dioxide sensing characteristics over the range from 0 to 300 ppm at 600°C. In addition, the durability of the film in high-temperature combustion exhaust was examined, and the upper limiting temperature was obtained.

キーワード 窒素酸化物,排ガス浄化,酸化物半導体,ガスセンサ,自動車

48

1.はじめに

地球環境を保護するために,自動車や工場から 排出されるNO_x,CO,HC等の有害ガスを低減す る必要がある。この中でも特にNO_xは低濃度で人 体や動植物に悪影響を及ぼすために,一層の低減 が必要となっている。

その1つの方法として,発生源の排ガス中に含 まれるNO_x濃度を検出し,その濃度が最少となる ように燃焼制御や排ガス浄化装置の制御を行うこ とにより,NO_x排出量を低減させる方法が考えら れる。そのためには,排ガス中のNO_x濃度を直接 測定し制御する方法が必要となる。これまでNO_x 濃度を測定する方法は基準ガスを必要とする化学 発光法等の光学式分析計によるもので,これは大 型かつ高価であり,排ガス管に直接取り付けられ るものではなNo_xセンサの開発が盛んになってきてN る。

排ガス管に直接取り付けるセンサとしては, メインテナンスフリーでかつ耐熱性を要求される。 その要件を満たすNO_xセンサとしては,耐熱性機 能材料である酸化物半導体を用いた抵抗変化型 や,固体電解質を用いた起電力型及び電流型があ る。この中で,酸化物半導体を用いた抵抗変化型 はその構造が簡単であることから,小型で安価な センサを構成できる。このタイプのNO_xセンサに ついては近年研究が盛んになっており, SnO₂^{1,2)}, ITO³⁾, YBCO^{4,5)}, WO₃^{6,7)}, TiO₂^{8,9)}, Zn₂SnO₄ ^{10,11,12)}を用いた研究例がある。しかしその多 くは断片的であり、材料物性、NO_x検知特性、及 び耐熱性までの一貫した研究例が見あたらない。 そこで,本報告ではSbをドープしたスピネル型 結晶のZn₂SnO₄薄膜を用いた抵抗変化型NO_xにつ いて,材料物性,NO_x検知特性,共存ガス等の NO_x検知特性に及ぼす影響,及びその耐熱性につ いて述べる。

2.センサ材料及び構造

抵抗変化型ガスセンサは,数百 の温度領域で, 周囲のガス条件によって酸化物半導体の電子的な 物性が変化し,その結果,酸化物半導体の電気抵 抗が,ガス雰囲気によって変化する原理によるも のである。従って,用途に応じた抵抗変化率(感 度)や変化速度(応答特性)等に加えて耐熱性を 得るために,材料として用いる酸化物半導体の選 択は重要なポイントとなる。

2.1 センサ材料

排ガス管に直接取り付けるNO_xセンサとして は,充分なNO_x検出特性と共に,酸化性及び還元 性雰囲気に対する耐熱性が重要である。ガスセン サ材料としての酸化物半導体としては,従来から 家庭用のガス漏れ警報機に用いられているSnOっ やZnOが知られているが,これらの材料は還元性 雰囲気に対する耐熱性が期待できない。また、 MgAl₂O₄に代表されるスピネル結晶構造をもつ材 料は,高温安定性に優れ,耐熱性が期待される材 料系であるが, MgAl₂O₄は, その抵抗が極めて高 く,ガスセンサ材料として用いることは困難であ る。同じスピネル結晶構造の材料系の中で, Zn₂SnO₄は,ガスセンサ材料として広く用いられ ているSnO₂とZnOから成るものであり,ガスセン サ特性と高温安定性との両立が期待される。そこ で, Zn₂SnO₄を主成分とし, その抵抗を低減させ るために、ドナとしてSbを微量添加したものを センサ材料として用いることとした。

そのSb-Zn₂SnO₄の薄膜は,Al₂O₃基板上に多元RF スパッタリング法により成膜した。スパッタリン グターゲットには,金属Zn,Sn及びSbを用い,O₂ とArの混合ガス中で、反応性スパッタリングにより 成膜し,その後,空気中1000 で1時間熱処理を 行った。その成膜条件をまとめたものをTable 1 に示す。熱処理後の膜は、EPMA (Electron Probe

Table 1 Sputtering condition for the $Sb-Zn_2SnO_4$ thin film.

Zn, Sn, Sb
Al ₂ O ₃ (Thickness 0.6mm)
300°C
5m Torr
O ₂ 10cm ³ /min, Ar 30cm ³ /min
1000°C in air for 1hour

Micro Analyzer) とX線回折により解析した。 Table 2にEPMAによる分析結果を,またFig. 1に X線回折による測定結果を示す。Fig. 1から,成 膜した材料は,スピネル構造Zn₂SnO₄の単相にな っていることを確認した。

2.2 構造

ガスセンサ特性を検討するための試料の構造を Fig. 2に示す。センサは基板であるAl₂O₃の両面に 形成してある3膜からなり,上面にはPtの櫛形電 極(電極間距離0.2mm)と前述のSb-Zn₂SnO₄から 成る感ガス膜が,また下面にはセンサを所定の動 作温度まで昇温させるためのPt薄膜から成るヒー タが形成されている。それぞれの膜厚は,感ガス 膜は0.5μm,電極は1μm,及びヒータは2μmとし た。なお,電極とヒータのPt薄膜はDCスパッタリ ングにより成膜し,それらのパターンは,金属マ スクを用いて成膜することにより形成した。

作製したセンサは,ガス流通系に配置し,セン サ下面のヒータによりセンサを600 に維持した 状態で,ガス濃度変化に対するセンサ抵抗変化を 測定した。なお,センサ抵抗の測定は,センサ上

 Table 2 Composition of the deposited film characterized by electron probe microanalyzer.

Amount of Sb ₂ O ₃	0.55molecular %
Zn/Sn ratio	2.42 (atomic ratio)

Fig. 1 X-ray diffraction profile of the deposited film after annealing at 1000°C.

面の櫛形電極間に1 (V) のDCバイアスを印加し, 微少電流計により測定した電流を抵抗値に換算した。

センサの温度は,ヒータとして用いているPt薄 膜の抵抗をあらかじめ測定し,Ptの抵抗-温度係 数により所定の温度まで昇温できるようにヒータ の回路定数を設定した。また,昇温後は放熱条件 が変動しても一定温度に維持するために,Pt薄膜 の抵抗が一定になるようにフィードバック制御を 行った。

3 . NO_x検出特性

排ガス用のNO_xセンサでは,NOとNO₂の総和の 濃度を検出できることが好ましい。しかし,一般 に抵抗変化型ガスセンサでは,NOに比べ電子吸 引性の高いNO₂に対する感度の方が高い。NOと NO₂比が大きく変化しない条件であれば,NO₂濃 度を検出することによりNOとNO₂の総和の濃度 とある程度の相関が得られる可能性がある。そこ で,まずNO₂に対する特性を検討し,その後NO とNO₂の混合系について検討することとした。

本センサの特性は, Fig. 3に示すガス流通系に より測定した。測定に使用したガス組成はおおむ ね実際の排ガスを模擬したものであり,それらの 測定条件をまとめてTable 3に示す。

なお, Table 3は基本的な測定条件を示しており,

Fig. 2 Structure of the sensor. $(16 \times 3.3 \times 0.3 \text{ mm})$

NO₂濃度変化に対する測定を行う場合はTable 3の 条件でNO₂濃度のみを変化させ,他のガス濃度は 一定値のままとした。なお,全ガス流量は,N₂の 流量を調整することにより一定値に維持した。一 方,他のガス濃度変化や温度変化がNO₂検出特性 に及ぼす影響を調べる場合は,影響を調べる項目 のみを変化させ,他の条件は一定値のままとした。

3 . 1 基本特性

本センサの代表的な特性をFig. 4(a),(b)に示す。 NO₂濃度を0~300ppmの範囲で増加させた場合, その増加と共にセンサ抵抗が増加し,0ppmと 300ppmでは、おおむね1桁程度センサ抵抗が異な り,充分な感度が得られていることがわかる。ま

Fig. 3 Diagram of gas-sensing experiment.

 Table 3 Basic composition of gases for gas-sensing experiment.

O2 5% NO₂ 50 ppm NO 0 ppm CO₂ 10 % Gas concentration CO 0 ppm 50 ppm i-C4H10 Water vapor 1~2% Total flow rate 5 l/min (Balanced with N2) 600 Sensor temperature Temperature 400 Gas temperature

豊田中央研究所 R&D レビュー Vol. 33 No. 2 (1998. 6)

た応答性については,ガス流速等の条件によって 前後するが,本測定では,センサ抵抗の変化が飽 和値の90%に達する時間が10秒程度であった。

3.2 妨害ガスの影響

一般に排ガス中においては多種類のガス成分が 共存しているため,NO_xセンサとしては目的とす るNO_x濃度の変化に対してのみセンサ出力が変化 し,他のガス濃度の変化にはできる限り影響され ないことが望ましい。そこで,代表的な共存ガス である,O₂,CO,CO₂,HC(ここではi-C₄H₁₀を 用いた)及びNOの濃度変化に対するNO_x検出特 性への影響について検討した。その結果をFig.5 (a)~(e)に示す。この検討では,NO₂濃度を50ppm (一定)にしておき,影響を調べる該当のガス濃 度のみを変化させた。なお,それぞれのガスの濃 度は排ガスを想定した値を中心に変化させた。

影響はガス種によって異なり,O₂(2~10%), CO(0~500ppm),CO₂(0~20%)についてはほと んど影響が無かったが,i-C₄H₁₀(0~500ppm)と NO(0~300ppm)についてはかなり影響が高いこ とがわかった。

3.3 温度の影響

排ガス中でセンサを使用する場合,燃焼条件に よってそのガス温度が変化するためセンサ周囲の 温度がかなり大きく変動する。そこで,センサ周 囲のガス温度変化とセンサ自身の温度変化のNO_x 検出特性に及ぼす影響について調べた。なお,セ ンサ周囲のガス温度(200~400)については, センサを取り付けている加熱フランジ内を流れる ガス温度を熱電対で測定しながらそのフランジの ヒータ電力を変えた。またセンサ温度(580~

Fig. 4 Sensing characteristics to NO₂ (600°C).
(a) Static characteristics (b)Response transient

620) については,センサチップの下 面に形成してあるPt薄膜のヒータの電 力を変えた。

Fig. 6に示す結果から,センサ周囲 のガス温度は大きく変化してもNO_x検 出特性にはほとんど影響を及ぼさない が,一方,センサ自身の温度はわずか な変化でも大きな影響があることがわ かった。なお,本センサを実際に排ガ ス中で使用する場合には,センサ自身 の温度は,センサの熱容量が小さく, かつ回路により精密に制御するため, その制御性が高く,実用上センサ温度 の変動はほとんど問題にならないもの と思われる。

4. 耐熱性

排ガスセンサは,燃焼条件等によっ て高温の排ガスに曝されることがある ので,その耐熱性は重要である。一般 に酸化物半導体は酸素共存下ではかな り高温まで安定であるが,酸素が無い 還元性雰囲気中での安定性が懸念され る。そこで,モデル燃焼排ガスと電気 炉とを用いて還元性雰囲気におけるセ ンサの耐熱性を検討した。

この検討は,加速試験的に高温で行 うために,センサチップの下面に形成 してあるPt薄膜のヒータを使用せず, センサチップを石英管中に置き,それ を外部から電気炉により加熱する方法 を用いた。なお、本試験は熱的に定常 状態であるので,センサチップの温度 は雰囲気温度と同様とみなした。そこ へi-C4H10と空気を所定の流量比で燃焼 対たでの時間還元性雰囲気に暴露 し,暴露前後での空気中のセンサ抵抗 を比較すると共に,暴露中もセンサに はバイアス電圧を印加した状態で,セ ンサ抵抗を連続測定した。

その結果をFig. 7に示す。ここでは

51

Concentration of NO (ppm)

Fig. 5 Influences of various coexistent gases on the sensor resistance to 50ppm NO₂ (600°C). (a) O₂, (b) CO₂, (c) CO, (d) i-C₄H₁₀, (e) NO.

Fig. 6 Influence of gas temperature (a) and sensor temperature (b) on the sensor resistance under exposure to 50ppm NO₂. The sensor temperature was fixed at 600°C for (a).

空気過剰率(λ)は , $\lambda = 0.86$ の還元性雰囲気で行った。なお λ とは , $\lambda = (空燃比) / (理論空燃比) で$ 定義されるものである。

600 では暴露前後及び暴露中,いずれもセン サ抵抗の変化は見られなかった。一方,700 で は還元性雰囲気において短時間の内にセンサ抵抗 が上昇し,暴露前後で顕著なセンサ抵抗の違いが 見られた。また,650 ではそれらの中間的な結 果であったことから,本センサの還元性雰囲気に 対する耐熱温度は600 ~650 程度であること が推測された。

前述のセンサ抵抗変化の原因を調べるため,セ ンサをさらに高温の850 で同様の還元性雰囲気 に暴露し,SEM (Scanning Electron Microscope) に よりセンサ表面の観察を行った。その結果,Fig.8 に示すように,暴露前後では表面の形態が著しく 異なっていることがわかった。またEPMAとXPS (X-ray Photoelectron Spectroscopy)で分析した結 果,暴露後のものは高温の還元性雰囲気により金 属酸化物が還元され金属状態になって蒸発した様

Fig. 7 In-situ measurement of sensor resistance upon switching-on and -off reductive gas flow. $\lambda = (\text{Air-fuel ratio}) / (\text{Stoichiometric air-fuel ratio})$. (a) Measured at 600°C (b) Measured at 700°C

(a)

(b)

Fig. 8 Scanning electron microscopic view of gas-sensing film before (a) and after (b) the durability test ($\lambda = 0.86$) at 850°C for 1hour.

豊田中央研究所 R&D レビュー Vol. 33 No. 2 (1998.6)

子がみられた。

5.エンジン排気中の特性

センサをエンジンの排ガス管に取り付けてセン サ特性を測定した例をFig.9に示す。使用したエ ンジンは直列4気筒の一般的なものである。

この測定では,排ガスは酸素過剰のλ=1.5とし, 一定のエンジン条件のまま,排ガス中のNO_x濃度 を数ppm ~ 数百ppmまで変化させ,化学発光式の NO_x分析計の指示値とセンサ抵抗とを比較した。

Fig. 9の結果から,分析計の指示値とセンサ抵抗は相似的に変化し,排ガス中のNO_x濃度に対応したセンサ出力が得られることがわかった。なおFig. 5(e)の結果から,本センサはNO濃度が増加すると,見かけのNO_x濃度が減少したように見えるといった問題がある。従って,エンジン条件が大きく変化した場合はNOとNO₂の比が大幅に変化することが予想されるので,総NO_x濃度との相関が低下してしまう。Fig. 9の実験では,一定のエンジン条件においてNO_x濃度のみを変化させたため,総NO_x濃度に対応したセンサ抵抗変化が得られている。

6.まとめ

多元RFスパッタリング法によりSbをドープしたスピネル単相のZn₂SnO₄薄膜を成膜することができた。これを用いたセンサは600°Cにおいて0

Fig. 9 Output characteristics of the sensor in engine exhaust.

~ 300ppmのN0₂に対して,良好な検知特性を示す こと共に、還元性雰囲気600 までの耐熱性を有 することがわかった。

謝辞

本研究のエンジン試験にあたり,トヨタ自動車 株式会社の方々のご協力を頂きました事に感謝し ます。

参考文献

- Chang, S. C. : "Thin-film Semiconductor NO_x Sensor", IEEE Tran. Elect. Dev., 26-12(1979), 1875
- Sberveglieri, G., Faglia, G., Groppelli, S. and Nelli, P. : "Methods for the Preparation of NO, NO₂ and H₂ Sensors Based on Tin Oxide Thin Films, Grown by Means of the r.f. Magnetron Sputtering Technique", Sensors and Actuators B, 8(1992), 79
- Sberveglieri, G. and Groppelli, S. : "Radio Frequency Magnetron Sputtering Growth and Characterization of Indium-tin Oxide (ITO) Thin Films for NO₂ Gas Sensors", Sensors and Actuators, 15(1988), 235
- Huang, X. J., Cchoonman, J., and Chen, L. Q. : "High-Tc Superconductors as NO Sensor Material: a General Investigation", Sensors and Actuators B, 22(1994), 211
- 5) Kudo, S., Ohnishi, H., Matsumoto, T. and Ippommatsu, M. : "NO_x Sensor Using YBa₂Cu₃O_{7- δ}Thin Films", Sensors and Actuators B, 23(1995), 219
- Akiyama, M., Tamaki, J., Miura, N. and Yamazoe, N. : "Tungsten Oxide-based Semiconductor Sensor Highly Sensitive to NO and NO₂", Chemistry Letters, No.9(1991), 1611
- Akiyama, M., Zhang, Z., Tamaki, J., Miura, N. and Yamazoe, N. : "Tungsten Oxide-based Semiconductor Sensor for Detection of Nitrogen Oxides in Combustion Exhaust", Sensors and Actuators B, 13-14(1993), 619
- Satake, K., Katayama, A., Ohkoshi, H., Nakahara, T. and Takeuch, T. : "Titania NO_x Sensors for Exhaust Monitoring", Sensors and Actuators B, 20(1994), 111
- Huusko, J., Lantto, V. and Torvela, H. : "TiO₂ Thick-film Gas Sensors and Their Suitability for NO_x Monitoring", Sensors and Actuators B, 15-16(1993), 245
- Matsushima, S., Kunitsugu, S., Kobayashi, K. and Okada, G. : "NO₂ Sensing Properties of Thick Zn₂SnO₄ Film", J of Ceramic Soc. of Jap., 103-3(1995), 302
- 平塚、小林、内田、勝部: "スピネル型構造をもつZn-Sn 系複合酸化物薄膜のガス検知特性", J of Ceramic Soc. of Jap., 104-11(1996), 1048
- 12) 山田, 妹尾, 増岡, 山下: "Zn₂SnO₄薄膜のNO_x検知特性と その耐熱性", 第58回応用物理学会学術講演会講演予稿 集, 3a-ZD-1(1997), 419

著者紹介

山田 靖 Yasushi Yamada
 生年:1961年。
 所属:機能デバイス研究室。
 分野:化学センサに関する研究。
 学会等:応用物理学会,電気学会,自動
 車技術会会員。

妹尾与志木 Yoshiki Seno
生年:1955年。
所属:ミクロ解析研究室。
分野:TEM観察,X線回析を中心とした
材料解析。
学会等:日本金属学会会員。
工学博士。

増岡優美 Yumi Masuoka
 生年:1970年。
 所属:機能デバイス研究室。
 分野:化学センサに関する研究開発。

山下勝次 Katsuji Yamashita 生年:1954年。 所属:機能デバイス研究室。 分野:ガスセンサに関する開発研究。 学会等:日本化学会,応用物理学会,日 本セラミックス協会会員。