選択還元型NO_x触媒における担体およびPt粒径の効果

田辺稔貴,後藤康友,畑中美穂,新庄博文

Supports and Particle Size Effects on Pt Catalysts for Selective NO_{x} Reduction

Toshitaka Tanabe, Yasutomo Gotoh, Miho Hatanaka, Hirofumi Shinjoh

要 旨

Pt担持触媒による酸素過剰雰囲気での選択的NO_x還元反応に対する担体効果およびPt粒径の効 果について種々の炭化水素を還元剤として調べた。C₃H₆などのアルケンを還元剤とした反応で は,担持されたPtのうち金属状態のPtが活性点として重要であり,担持されたPtをより金属状 態に保つSiO₂やzeoliteなどを担体として用いた触媒が高活性であることが明らかになった。ま た,n-C₆H₁₄などのアルカンを還元剤とした反応では酸化物担体の酸点が反応に寄与しているこ とが示唆され,zeoliteや -Al₂O₃など強い酸点を有する酸化物を担体に用いた触媒が高活性であ ることが明らかになった。NO_x還元活性に対する担持Ptの粒径効果は,用いる還元剤の種類に よって異なり,アルケンを還元剤とした反応では粒径が小さく高分散に担持されたPtが高活性 であったが,アルカンを還元剤とした反応ではNO_x還元活性に対して最適なPt粒径が存在する ことが明らかになった。

Abstract

Supports and Pt particle size effects were investigated on Pt catalysts for selective NO_x reduction with hydrocarbons in oxidizing atmosphere. Metallic Pt was found as the important active site of NO_x reduction with alkene. Pt catalysts supported on SiO₂ and zeolites have high activity for NO_x reduction with alkene since supported Pt on them remains as a metallic state even in oxidizing atmosphere. Pt catalysts supported on acidic oxides such as zeolite and γ -Al₂O₃ have high activity for NO_x reduction with alkane. This result indicates that the acidic sites in oxide supports should contribute to NO_x reduction by the activation of alkane.

As for the particle size effects, highly dispersed and small particle size Pt was active for NO_x reduction with alkene while the optimum Pt particle size existed for NO_x reduction with alkane. The Pt particle size effects on the NO_x reduction activity depends only on the type of hydrocarbons, and not on the number of carbons in them.

キーワード 担体効果,粒径効果,Pt触媒,NOx還元,アルカン,アルケン

1.はじめに

特集

地球温暖化の主な原因とされているCO₂の排出 量削減や石油資源の有限性などの観点から,自動 車の燃費の低減が求められている。希薄燃焼型ガ ソリンエンジンやディーゼルエンジンは通常のガ ソリンエンジンに比べて燃費に優れているが,こ れらエンジンからの排気は酸素過剰雰囲気であり, 通常の三元触媒システムによるNO_xの還元浄化が 困難であるため,新たな排気浄化システムや触媒 が必要とされている。

Cu-ZSM-5は酸素過剰雰囲気における炭化水素 による選択的NO_x還元触媒として高活性であるこ とが知られている^{1~3}。しかし自動車の排気浄化 用触媒としての耐久性に乏しく,実用化は困難で ある^{4,5}。一方,Pt担持触媒についても200 ~ 400 の範囲で炭化水素により選択的にNO_xを還 元できることが明らかになっている^{6~8}。活性種 であるPtは三元触媒にも用いられており,低温活 性,耐久性などの面からCu-ZSM-5などの卑金属 触媒と比較して優れた点が多い。

本研究では,Pt担持触媒の酸素過剰雰囲気にお けるNO_x還元活性への担体およびPt粒径効果につ いて各種炭化水素を用い検討した。

2.実験方法

2.1 担体効果

2.1.1 触媒調製

Pt担持触媒の担体効果を調べるために種々の酸 化物担体を用い触媒を調製した。用いた酸化物は 単独酸化物としてSiO₂, α -Al₂O₃, γ -Al₂O₃, ZrO₂, TiO₂, MgOを, 複合酸化物としてmordenite, ZSM-5のzeolite, SiO₂-Al₂O₃, SiO₂-MgOを用いた。Ptの 出発塩としてジニトロジアンミン白金を用い,通 常の含浸担持法によってPtを担持した後,空気流 通下で500 において3時間焼成し,Pt担持触媒を 得た。なお,白金担持量は1wt%とした。

2.1.2 触媒活性

固定床流通式の反応装置を用い,ディーゼル排 気を模擬したモデルガス(CO: 150ppm, HC: 3000ppmC, SO₂: 25ppm, NO: 230ppm, CO₂: 6.7%, O₂: 10%, H₂O: 5%, N₂: バランス)によっ て触媒活性を評価した。還元剤としてアルケンで あるC₃H₆, およびアルカンであるn-C₆H₁₄を用い た。反応温度は120 ~ 500 とした。測定には 粉末触媒を圧粉成形し, 1~2mmのサイズに整粒 したものを用いた。活性評価に供する触媒量は2g とし,モデルガス流量は101/min.とした。

2.1.3 キャラクタリゼーション

Ptの分散性,酸素の昇温脱離,光電子分光 (XPS),およびNH₃吸着熱の測定を行った。Ptの 分散性測定は触媒学会推奨のCOパルス吸着法⁹⁾ により測定した。酸素の昇温脱離は500 での酸 化前処理後,室温でO₂を飽和吸着させた。その後, Heガス中で室温から900°Cまで50°C/min.の昇温速 度で昇温し,O₂の脱離プロファイルを質量分析器 によって測定した。XPSはPHI-5500MC(アルバッ クファイ製,光源AlKα:1486.6eV,Base Pressure: 2×10⁻¹⁰Torr)を用いて測定を行った。NH₃吸着熱 の測定には高温自動ガス吸着熱測定装置(東京理 工製)を用い200°Cで測定した。

2.2 粒径効果

2.2.1 触媒調製

触媒にはPt / SiO₂を用いた。Pt担持量はSiO₂担 体120gにつき,Pt2gの割合で担持した。Pt粒径の 変化は触媒を大気中で熱処理をすることによって 行った。熱処理は500,600,800,1000 の4種類で行った。また,熱処理時間はいずれも5 時間とした。

2.2.2 触媒活性

触媒活性の評価は2.1.2の項と同様の方法によって行った。還元剤としてアルケンである C_3H_6 , $n-C_6H_{12}$ を,アルカンである $n-C_4H_{10}$, $n-C_6H_{14}$ を用いた。

2.2.3 Pt粒径

Pt粒径は主に粉末X線回折の結果から算出した。 測定には理学電機製X線回折装置RAD-Bを用いた。 線源はCu-Kαを用い, 30kv-30mA, 走査速度2°/min.で 測定を行った。Ptの(111)の回折線(2θ = 39.7°)の 半値幅から式(1)に従いPt粒径を求めた¹⁰)。

 $L = \frac{1.5406 \times 0.89 \times 180}{1.5406 \times 0.89 \times 180}$

(1)

なお,粉末X線回折によってPt回折線が観察され ない程度に粒径が小さい場合はCO吸着量の測定 から,式(2)にもとづいてPt粒径を求めた¹¹⁾。

$$L = \frac{f \times M}{\rho \times N_A \times \pi \times r^2 \times D}$$
(2)

f : 形状因子(球形 = 6)

M: 分子量(195)

\rho : 密度(21.4g/cm³)

N.: アボガドロ数

r: 原子半径(1.3×10⁻⁸cm) D: 分散度 (Pt担持量に対するCO吸着量の比率)

3.実験結果および考察

3.1 担体効果

Fig. 1にγ-Al₂O₃を担体としたPt担持触媒の炭化 水素による選択的NO、還元反応でのHC, COおよ びNO_xの転化率の温度依存性を示す。200 付近 からCO, HCが酸化され, それと同時に200 の領域でNO_xが還元され,NO_xの転化率は 400 付近で最大となった。この反応を種々の酸 250 化物担体を用いた触媒について測定し,得られた 最高NO_x転化率をFig. 2に示す。最高NO_x転化率 は触媒担体の種類によって異なり,その序列は還 元剤である炭化水素の種類によっても異なった。 C₃H₆を還元剤とした場合にはSiO₂およびZSM-5, mordeniteのzeoliteを担体とした触媒が高活性であ **リ**, MgO, TiO₂, γ-Al₂O₃を担体とした触媒は比 較的活性が低かった。n-C₆H₁₄を還元剤とした場 合は, zeolite, γ-Al₂O₃を担体とした触媒が高活性 であり,SiO2を担体とした触媒は逆に活性が低か った。

これらの担体による触媒活性の違いを明らかに するために触媒のキャラクタリゼーションを行っ

Fig. 1 The temperature dependencies of HC, CO and NO_x conversions on $Pt/\gamma Al_2O_3$ catalyst in the simulated oxidizing exhaust gas reaction (HC=C₃H₆).

た。まず,各触媒中のPtの分散性と最高NO_x転化 率との関係を調べたが,Ptの分散性と最高NO_x転 化率との間には明確な相関が見られず,触媒活性 の違いは主に担体の効果によるものと示唆され た。Fig.3に酸素の昇温脱離測定の結果を示す。 酸素の脱離温度は担体の種類によって異なり,

 $SiO_2 < \gamma - Al_2O_3 < TiO_2 < MgO$

の順に高くなった。この序列は C_3H_6 を還元剤とした反応での NO_x 還元活性の序列と一致する。つまり酸素がより低温から脱離しやすく,担持されたPtが還元されやすい触媒ほど C_3H_6 による NO_x 還元活性が高いことがわかった。以後, C_3H_6 を還元剤とした反応での NO_x 還元活性について考察する。Fig. 4にXPSの測定によって得られた担持金属の酸化状態について示す。担持されたPtは0価の金属状態,+2,+4価の酸化状態をとっており,そ

Fig. 2 The max. NO_x conversions on the various catalysts in the simulated oxidizing exhaust gas reaction . a) Pt/SiO₂, b) Pt/ZSM-5,
c) Pt/mordenite, d) Pt/Nb₂O₅, e) Pt/WO₃,
f) Pt/ZrO₂, g) Pt/γ-Al₂O₃, h) Pt/SiO₂-Al₂O₃,
i) Pt/α-Al₂O₃, j) Pt/SiO₂-MgO, k) Pt/TiO₂,
l) Pt/MgO

の割合は担体の種類によって異なっていた。SiO₂ 担体では0価の金属状態のPtの割合が多く,TiO₂ 担体では+2,+4価の酸化状態のPtを多く含んで いた。この結果から得られた担持Pt中の金属Ptの 割合に対して触媒の最高NO_x転化率をプロットし たものをFig.5に示す。金属Ptの割合が高い触媒 ほど最高NO_x転化率が高くなる傾向が明らかにな った。このことはC₃H₆での選択的NO_x還元反応に おいて金属状態のPtが活性点として重要であるこ

Fig. 3 O_2 -TPD profile of the catalysts. a) Pt/SiO₂, b) Pt/ γ -Al₂O₃, c) Pt/TiO₂, d) Pt/MgO.

Fig. 4 The fraction of Pt⁰(metal), Pt²⁺ and Pt⁴⁺ in the catalysts determined by XPS measurement.
a) Pt/SiO₂, b) Pt/ZrO₂, c) Pt/TiO₂, d) Pt/Nb₂O₅, e) Pt/WO₃.

とを示している。このような担持されたPtの状態 の違いは酸化物担体と担持されたPtとの相互作用 に由来する。Fig. 6に酸化物担体中の陽イオンの 電気陰性度に対して最高NO_x転化率をプロットし たものを示す。陽イオンの電気陰性度が高くなる ほどつまり,イオンの酸性度が高くなるほど最高 NO_x転化率が高くなっているのがわかる。これは 酸化物担体と担持Ptとの電子的な相互作用によっ て酸性度の高いイオンを含む酸化物担体上では担

Fig. 5 The correlation between the metal fractions of Pt in the catalysts and max. NO_x conversions on them.

Fig. 6 The correlation between the electronegativity of cation in the support of the catalysts and the max. NO_x conversions on them. $\chi_i = (1+2z)\chi_0$, χ_0 : electronegativity of element, z:valence of ion.

持されたPtが金属状態に保たれ易いためと考えられる。

次にn-C₆H₁₄を還元剤とした反応での活性序列 について考察する。Fig. 7に酸化物担体のNH₃吸 着熱の測定結果を示す。横軸はNH3の吸着量を対 数軸で,縦軸はNH₃の吸着熱をプロットしてある。 測定した酸化物は大まかにわけて3群にわかれ, (1)酸量が多く,酸強度も高いzeolite系,(2)γ-Al₂O₃, ZrO₂, SiO₂-Al₂O₃など中間的な酸量で,中間的な 酸強度の酸化物,(3)SiO₂, α-Al₂O₃のようにほと んど酸性質を示さない酸化物に分けられることが 明らかになった。NH3の吸着熱が80kJ/mol以上の ものを化学吸着とみなし, Fig. 8に各酸化物担体 のNH3の化学吸着量を横軸に,その担体を用いた 担持Pt触媒の最高NO、転化率を縦軸にプロットし たものを示す。この結果から酸化物担体の酸量が 多いほどn-C₆H₁₄を還元剤としたNO_x転化率が高く なる傾向にあることが明らかになった。zeoliteや γ-Al₂O₃などに存在する酸点は炭化水素を活性化 し異性化反応や脱水素反応などを起こすことが知 られている。このことから, n-C₆H₁₄は酸化物担 体の酸点によって活性化され,その後Pt上でNO_x を還元すると推論した。

以上述べたように, C₃H₆を還元剤とする反応で

は金属状態のPtが, n-C₆H₁₄を還元剤とする反応 では酸化物担体上の酸点が活性点として重要であ ることが示唆された。このような炭化水素による 反応の違いは炭化水素のPtへの吸着力の違いに由 来すると考えられる。つまり,C₃H₆に代表される アルケンは分子内の二重結合の存在によってPtに 強く吸着し,活性化され酸化されると同時にNO_x を還元する。一方,n-C₆H₁₄に代表されるアルカン ではPtへの吸着力が弱いためPtにほとんど吸着し ないが,酸化物担体の酸点によって活性化される ことによってPt上へ吸着しやすくなり,Pt上で NO_xと反応することによってNO_xを還元すると考 えられる。以上の考察をもとにPt担持触媒上にお ける炭化水素によるNO_x還元反応機構の推定図を Fig.9に示した。

3.2 粒径効果

Fig. 10,11にそれぞれ C_3H_6 および $n-C_4H_{10}$ を還 元剤とした反応での各熱処理後の触媒の NO_x 還元 活性の測定結果を示す。熱処理温度が高くなるに つれて, C_3H_6 を還元剤とした反応では NO_x 還元活 性が低下するのに対し, $n-C_4H_{10}$ を還元剤とした 反応では NO_x 還元活性が高くなることが明らかに なった。Fig. 12に各触媒中の担持Ptの粒径と最高 NO_x 転化率との関係を各還元剤についてまとめて

Adsorption amount of NH₃/mol • g⁻¹

Fig. 7 Adsorption amount and adsorption energy of NH₃ on various supports oxide. - ZSM-5, - SiO₂-Al₂O₃, - γ -Al₂O₃, - ZrO₂, - SiO₂, - α -Al₂O₃, - SiO₂-MgO

Fig. 8 The correlation between the adsorption amount of NH₃ (the adsorption energy above 80kJ/mol) and the max. NO_x conversions on the catalysts.

示す。Pt粒径が大きくなるにともなって,還元剤 が C_3H_6 や $n-C_6H_{12}$ のアルケンの場合は最高 NO_x 転 化率は単調に低下し,還元剤が $n-C_4H_{10}$ や $n-C_6H_{14}$ のアルカンの場合は最高NO_x転化率が高くなった。また,この傾向は炭素数6までの範囲で炭素数には依存せず,炭化水素の種類(不飽和結合の

Fig. 9 The estimated reaction scheme of NO_x reduction by hydrocarbons on supported Pt catalysts.

Fig. 10 The temperature dependencies of NO_x conversions on Pt/SiO₂ catalysts calcined at various temperature : a) 500°C, b) 600°C, c) 800°C, d) 1000°C. C₃H₆ was used as reductant.

Fig. 11 The temperature dependencies of NO_x conversions on Pt/SiO₂ catalysts calcined at various temperature : a) 500°C, b) 600°C, c) 800°C, d) 1000°C. n-C₄H₁₀ was used as reductant.

Fig. 12 Pt Particle size dependencies of max. NO_x conversions on Pt/SiO₂ catalysts in the simulated oxidizing exhaust gas reaction with various hydrocarbons : a) C₃H₆, b) n-C₆H₁₂, c) n-C₄H₁₀, d) n-C₆H₁₄ as reductant.

触媒活性の粒径効果を議論する場合,活性点一個当たり,1秒間に反応する割合を表す値である, 比活性(TOF: turn over frequency)を用いること が多い¹²⁾。簡単な考察から,全反応速度とTOF および粒径との関係について以下の式が得られる。

 $A = \frac{\text{TOF} \times B}{r}$

- A: 全反応速度 (mol・s⁻¹)
- TOF : turn over frequency(s^{-1})
- B: 定数 (mol・m)
- r: 金属粒径(m)

したがってTOFが粒径に依存しない場合,触媒 活性は粒径の増大に伴って単調に低下する。今回 得られた結果から,上式を用いて最高NO,転化率 に対するTOFを計算した結果をTable 1に示す。 還元剤が $C_{3}H_{6}$, n- $C_{4}H_{10}$ いずれの場合も粒成長と ともにTOFが増大している。粒径が3nmから62nm へと約20倍増大する間に,C₃H₆を還元剤とした 反応のTOFが約13倍増加したのに対し, n-C₄H₁₀ を還元剤とした場合はTOFが約140倍増大してい るのがわかる。このようにアルカンを還元剤とし た場合は、NOx還元反応のTOFの粒径依存性がか なり大きいことがわかった。TOFが粒径に大きく 依存する原因としては,表面原子の配位構造が粒 径によって異なる,表面に露出する表面の種類が 粒径によって変化する,あるいは,金属粒子の電 子状態が粒径によって変化する,などの効果が原 因と考えられているが12),不均一触媒反応では 同一の反応,触媒に対しても,反応条件(ガス組 成,温度,空間速度など)などの違いにより得ら れている結果が異なる場合も多く,一般的な解を 得るのが困難なことが多い。

 $\label{eq:table1} \begin{array}{ll} \mbox{Table 1} & \mbox{TOF}(\mbox{turn over frequency/s}^{-1}) \mbox{ of } NO_x \mbox{ reduction} \\ & \mbox{with } C_3H_6 \mbox{ and } n\text{-}C_4H_{10} \mbox{ on } Pt/SiO_2 \mbox{ catalysts.} \end{array}$

Pt particle size/nm	$TOF(C_3H_6)$	$TOF(C_4H_{10})$
3	1.2×10^{-2}	1.1×10^{-3}
62	1.6×10^{-1}	1.5×10^{-1}

今回の結果については現在のところ,粒径によるNO_x還元活性の変化を説明できる機構は明らかになっておらず,炭化水素の吸着性に着目した反応解析,触媒物性の検討から明らかすることが今後の課題として残されている。

4.まとめ

酸素過剰雰囲気での選択的NO_x還元反応での触 媒担体およびPt粒径の効果を調べた結果,アルケ ンを還元剤とした反応では高分散でかつ金属状態 のPtを含む触媒が,アルカンを還元剤とした反応 では強い酸点を多く有する酸化物担体を用い,反 応条件に最適な粒径のPtを含む触媒が高いNO_x還 元活性を有することが明らかになった。

参考文献

- 1) Held, W., et. al., SAE Tech. pap. Ser, No.900496, (1990)
- 2) 岩本, ほか: 触媒, 32(1990), 430
- 3) 村木, ほか, 特開昭 63-100919
- 4) Tanabe, T., et al. : Appl. Catal. B, 6(1995), 145
- 5) Matsumoto, S., et al. : Catal. Today, 22(1994), 127
- 6) Zhang, G., et al. : Appl. Catal. B, 1(1992), L15
- 7) Hirabayashi, H., et al. : Chem. Lett., (1992), 2235
- 8) Obuchi, A., et al. : Appl. Catal. B, 2(1993), 71
- 9) 参照, "触媒を用いた測定法の標準化, 2.COパルス法に よる金属表面積測定法": 触媒, (1986), 28~41
- 10) 触媒講座3固体触媒のキャラクタリゼーション, 触媒学 会編, (1985), 120, 講談社
- 11) 触媒講座5触媒設計, 触媒学会編, (1985), 141, 講談社
- 12) Che, M., Bennett, C. O. : Advances In Catalysis No.36, Ed. by D. Eley, (1989), 55, Academic Press

著者紹介

田辺稔貴 Toshitaka Tanabe
 生年:1966年。
 所属:触媒反応研究室。
 分野:排気浄化用触媒に関する研究・開発。
 学会等:日本化学会会員。

後藤康友 Yasutomo Goto 生年:1970年。 所属:第2特別研究室。 分野:無機多孔体の合成および応用。 学会等:ゼオライト学会会員。

畑中美穂 Miho Hatanaka
 生年:1967年。
 所属:触媒材料研究室。
 分野:排気浄化用触媒に関する研究。
 学会等:日本化学会会員。

新庄博文 Hirofumi Shinjoh 生年:1955年。 所属:触媒反応研究室。 分野:自動車排気浄化触媒の研究・開発。 学会等:日本化学会,化学工学会,日本 機械学会会員。 1995年日本機械学会技術賞受賞。