成膜時の残留水分が巨大磁気抵抗に及ぼす影響と その制御

志賀孝広,鈴木基史,多賀康訓

Effect of Residual Water in Deposition Atmosphere on Giant Magnetoresistance

Takahiro Shiga, Motofumi Suzuki, Yasunori Taga

要

旨

新規磁気センサとして,その高出力を特徴とす るGMR(Giant Magnetoresistance,巨大磁気抵抗) 素子は,回転速センサ,角度センサなど車載セン サへの応用が検討されている。代表的なGMR素 子であるCo/Cu人工格子は,その成膜条件により 素子の特性が大きくばらつくことが以前から知ら れていた。我々は成膜雰囲気中の残留ガスを分析 し,雰囲気中の残留水分が多いほど,また成膜速 度が遅いほど素子の磁気抵抗変化率(MR比)が 小さくなることを見いだした。その原因は,膜中 への,残留水分に由来するOの取り込みにあり, 残留水分圧/成膜速度比というパラメータを用い ることで,成膜条件を統一的に判断できることを 解明した。

キーワード

研究報告

巨大磁気抵抗, Co/Cu人工格子, スパッタリング, 残留ガス, 残留水分, 成膜速度

Abstract

The giant magnetoresistance (GMR) of a magnetic/nonmagnetic superlattice, which is expected to be a novel magneto sensor with a high MR ratio, has been known to be significantly affected by its deposition condition. We analyzed the residual gases during the deposition, the consequently, MR ratio of resulting films, drastically decreases with increasing residual water in the deposition atmosphere and decreasing deposition rate, which is considered to be due to the incorporation of oxygen from the residual water into the film. The GMR property is found to be universally expressed in terms of the residual water to deposition rate ratio.

Keywords

Giant magnetoresistance, Co/Cu superlattice, Sputtering, Residual gas, Residual water, Deposition rate

1.はじめに

磁性/非磁性人工格子が示す巨大磁気抵抗効 果(GMR)¹⁾については,理論的な興味と応用へ の期待との両面から広く研究が行われてきた。特 にCo/Cu人工格子²⁻⁵⁾は,室温においても大きな 磁気抵抗変化率(MR比)を示すため,研究対象 の中心となっている。GMRは人工格子の成膜条 件に強く影響されるため,論文等に報告される MR比には大きなばらつきがあり,これを制御す る方法の確立が応用面からも重要な問題であっ た。そのため,成膜条件の最適化に関する研究例 ^{9~15)}も多い。例えば到達真空の影響に関する研 究例として,Kagawaら¹³⁾は,膜中へのOの取り 込みがGMRに大きく影響することを報告してい るが,Oの取り込みメカニズムについては詳しく 言及していない。

我々の研究室においては,当初より世界トップ 豊田中央研究所 R&D レビュー Vol. 35 No. 1 (2000. 3) レベルのMR比を示すCo/Cu人工格子の作製に成 功し,特に界面の乱れとGMRとの関係^{4~6)}等に 注目して研究してきた。また,耐熱性⁷⁾等,セン サ等への実用化に必要な多くのノウハウも同時に 蓄積してきたが,先に述べた到達真空がGMR特 性に影響を及ぼすメカニズムに関しては未解決の ままであった。今回は,成膜中の残留ガスをモニ ターできるように差動排気を利用したガス分析の 手法を取り入れ,成膜雰囲気と膜特性の相関に注 目して研究を行った。その結果,膜の物性を制御 する上で重要なパラメータを見いだした⁸⁾ので, これらを報告する。

- 2.実験
- 2.1 素子の作製

Co/Cu人工格子は,1000Åの熱酸化膜を付けた *φ*3"Si(111) 基板上にマグネトロンスパッタリング により作製した。成膜開始前に, クライオポンプ によりスパッタチャンバーを到達真空P_{base}まで排 気した。残留水分とGMRとの関係を明らかにす るため, P_{hase}は1×10⁻⁷~1×10⁻⁵ Torrの範囲で変化さ せた。Phaseに到達後Arガスを導入し,ガス圧は成 膜プロセスの間3.0×10⁻³ Torr に制御した。スパッ タリング成膜の前に,基板に逆バイアスをかけて プラズマクリーニングを行い,その後,CoをRF スパッタリングにより, CuをDCスパッタリング により成膜した。まずターゲットクリーニングの ためシャッター内で放電し,次にシャッターの開 閉をコンピュータにより制御することでCo/Cu人 工格子を作製した。CoとCuの成膜速度が同じ値R になるようにパワーを調節し,成膜速度とGMR の関係を調べるため,Rは1,3,5Å/sの3つの値 について変化させた。人工格子の構造は,基板側か 5, Si/SiO₂(1000Å) /Co(50Å)/Cu(21Å)/ [Co(10Å)/Cu(21Å)]₁₆ である。Co/Cu人工格子のMR比はCu層の厚さに 対して振動的に変化し,その厚さが約10Å,20Å の時,MR比が極大となることが知られている^{2,3}。 今回はCu層の厚さを, MR比が第2の極大となる 21Åとした。この系は室温で約24~28%程度の MR比を示す。

装置の構成をFig. 1に示す。我々の使用する4重 極型質量分析計 (QMS)は,動作範囲が全圧で 5×10⁻⁵ Torr以下に限られるため,全圧が3×10⁻³ Torr になるスパッタ中の残留ガスを直接モニターする ことはできない。そこで,スパッタチャンバーに 超高真空 (UHV) チャンバーを接続し,これを差 動排気することで約2桁圧力を落としてモニター する方法を採った。UHVチャンバーはターボ分 子ポンプ (TMP) により排気され,その到達真空 は4×10⁻⁹ Torr以下である。スパッタチャンバー内 の残留ガス分圧 P_x (x=H₂, He, CH₄, H₂O, N_2+CO , O_2 , Ar, CO_2) は, UHVチャンバー内の ガス分圧から推定した。TMPとクライオポンプで はガスの種類により排気速度が異なるため, P.の 絶対値についての議論は難しいが、同じガスにつ いての時間変化やバッチ間の相対変化になどつい ては有意であるため,これ以降の議論はそれら点 に注目していく。

2.2 素子の評価

Co/Cu人工格子の組成分析は,二次イオン質量 分析 (SIMS) により行った。今回使用するSIMSの 深さ分解能では,[Co(10Å)/Cu(21Å)]という31Å周 期の人工格子構造までは見えないため, [Co(50Å)/Cu(50Å)]₈という長周期(100Å)のモデル 人工格子を作製した。これらのサンプルに関して は成膜速度を3Å/sに固定した。一次イオンに ¹³³Cs⁺を使用し,二次イオン¹³⁴CsH⁺,¹⁴⁹CsO⁺, ¹⁹²CsCo⁺,¹⁹⁶CsCu⁺をQMSにより検出した。各二 次イオン強度は²⁶⁶Cs₂⁺イオンの強度により較正し

Fig. 1 Schematic drawing of the system for deposition and residual gas analysis.

た。Co中のOと, Cu中のOでは, 母材効果により 検出感度が異なるため, それぞれの1µm厚の単層 膜に,¹⁶Oを打ち込んだ参照試料を用意し,感度補 正に用いた。

磁気抵抗 (MR) はDC4端子法により面内配置で 測定した。磁化測定は振動試料型磁化測定法 (VSM)により行った。どちらも室温で測定した。

3. 結果

3.1 成膜条件と磁気抵抗特性

Fig. 2(a)にMR比の P_{base} およびR依存性を, Fig. 2(b) にR=5Å/sにおけるMR curveの P_{base} 依存性を示す。 いずれのRにおいても, P_{base} が小さくなるとMR 比が増加することが分かる。それに加え,Rが大 きくなるとやはりMR比が増加する。R=5Å/sの場 合,MR比は, $P_{base}=5 \times 10^{-7}$ Torr以下では,27%あ たりで飽和しているが, $P_{base}=1 \times 10^{-6}$ Torr付近で, P_{base} の増加に伴い急激に減少する。R=1Å/sの場合, $P_{base}=3 \times 10^{-7}$ Torrという高い到達真空度において も,MR比は5%以下という低い値を示す。また, Rによらず, $P_{base}=1 \times 10^{-5}$ Torrという悪い到達真空 度で成膜したサンプルのMR比は,0.5%以下とな る。このように,MR比は P_{base} およびRの両者に 強い依存を示す。

3.2 成膜時の残留ガス

Ar, H₂, H₂O以外のガスの分圧は全圧に対して 2桁以上低く,成膜の間もほとんど変化せず,ま

Fig. 2 (a) Base pressure (P_{base}) and deposition rate(*R*) dependence of MR ratio. (b)Change of MR curves with P_{base} for samples deposited at *R*=5 /s.

た P_{base} にもほとんど依存しない。よって,これ以降, P_{H2} , P_{H2O} , P_{O2} の変化について主に議論していく。

成膜プロセスの間の, 典型的な残留ガス分圧の 変化の例をFig. 3に示す。Arガスを成膜チャンバ ーに導入した直後,全てのガス分圧が劇的に変化 する。これは,全圧の増加により,クライオポ ンプの排気速度が変化したためである。逆スパッ タの間, P_{H2}の激増と, P_{H20}のわずかな減少が観 察された。クリーニング後1分間おいた後,ター ゲットの放電を開始した。その直後再び, P_{H2}の 激増と, P_{H20}の連続的な減少が見られた。さらに, HっはCuの成膜中よりもCoの成膜中により多く発 生し,その結果 P_{H2} の振動が見られた。成膜中, CoおよびCuの両ターゲットは放電させたままで あることから,このP_{H2}の振動は,シャッターの 開閉に伴って起きていることになる。故に,H2は 試料表面やチャンバーの壁面において発生してい ると考えられる。

Fig. 4は,成膜中の平均ガス分圧< P_x >の, P_{base} への依存を示している。< P_{H2O} >と< P_{H2} >は P_{base} の増加に伴い増えているが,< P_{O2} >は P_{base} にほとんど依存しないことが分かる。よって,Fig. 2(a)に

Fig. 3 A typical change of partial pressure of residual gases P_{H2} , P_{H2O} and P_{O2} during the deposition process with $P_{\text{base}}=1.0\times10^{-5}$ Torr.

示したようなMR比の*P*_{base}依存性は,成膜雰囲気 中の残留H₂OやH₂に原因があると考えられる。

3.3 成膜条件と膜組成

Fig. 5は,SIMSにより測定した, P_{base} の異なる Co/Cu人工格子の,深さ方向の組成プロファイル である。 P_{base} の増加に伴い,Oの濃度が増加して いることが分かる。前節で述べたように, $\langle P_{O2} \rangle$ kP_{base} に依存しないことから,膜中に取り込まれ ているOは,残留H₂Oから供給されたと考えられ る。一方, P_{base} の上昇に伴う $\langle P_{H2} \rangle$ の増加にもか かわらず,Hの濃度 kP_{base} にほとんど依存しない。 よって,MR比の P_{base} 依存性は,Hの取り込みに 起因するものではない。

母材効果補正のための参照試料をSIMS分析した結果から,二次イオン強度と絶対濃度の間の関係を求めた。結果,Cu中のOの方が,Co中のOよりも,約20倍検出されやすいことが分かった。またOの絶対濃度は,Fig.5(c)の $P_{\text{base}}=1.0\times10^{-5}$ Torrで成膜したサンプルの平均レベルで,0.1~1at.%程度であり, P_{base} が1桁小さくなると,O濃度もやはり1桁程度小さくなる。Fig.5(b),(c)において顕著に見られるように,Oの二次イオン強度は,人工格子周期にあわせて振動し,Co層における強度の方が,Cu層よりも強い。母材効果を考慮しても,OはCo層に選択的に取り込まれているこ

Fig. 4 P_{base} dependence of averaged partial pressure of residual gases during the deposition $\langle P_{\text{H2}} \rangle$, $\langle P_{\text{H2O}} \rangle$ and $\langle P_{\text{O2}} \rangle$.

とが分かる。

4.考察

第3章で述べたように,成膜中には P_{H2} の増加と P_{H20} の減少が見られ,膜中にはOが取り込まれて いることが分かった。これらの結果から我々は, 試料表面において H_2 Oが H_2 とOに解離し,Oのみ が膜中に取り込まれたのではないかと推測した。 H_2 Oの固体表面への吸着に関しては数多くの研究 $例^{16-20}$ があり,Co表面では, H_2 O $H_2+O_{W_2}$ と いう解離吸着を起こす^{17,18)}が,Cu表面ではそ の傾向が弱く,分子吸着しやすい^{19,20)}ことが知 られている。よって,Cu成膜中よりも,Co成膜 中の方がより多くの H_2 が発生し,またCo膜中に より多くのOが取り込まれるはずである。これは, 残留ガス分析 (Fig. 3)や,SIMS分析 (Fig. 5)の結果 と一致する。

我々の推論においては,試料表面が残留H₂Oに 暴露される量が,膜の物性を決める重要なパラメ ータとなるはずである。そこで我々は,「残留水 分圧/成膜速度比」

ξ = <P_{H2O}>/R (1)
 を定義した。このξは,試料表面に単位時間に飛
 来するH₂O分子の数に比例する。

Fig. 6に, MR比, 飽和および初期抵抗率, *Mr/Ms*(残留磁化/飽和磁化比)をξによりプロットした結果を示す。*P*baseと*R*という2つのパラメー

Fig. 5 Depth profiles of secondary ion intensity of Co, Cu, O (thick line) and H of samples deposited under the condition of $P_{\text{base}}=$ (a)1.1×10⁻⁷, (b)1.0×10⁻⁶ and (c)1.0×10⁻⁵ Torr.

豊田中央研究所 R&D レビュー Vol. 35 No. 1 (2000.3)

タに強く依存する (Fig. 2(a)) MR比は,横軸に を用いてプロットすることにより,1つの曲線の 上に乗ることが分かる。MR比は $\xi_c \sim 3 \times 10^{-5}$ Torr・ s/Åというしきい値を境に,急激に変化している。 飽和および初期抵抗率も,やはり ξ により統一的 に表される。飽和抵抗率は ξ の減少とともに単調 に減少するが,これはOのような不純物が減少し たためと考えられる。一方,初期抵抗値は ξ_c 以下 で増加する。Fig. 6(c)に示すように,Mr/Msが ξ_c 以下で急激に減少していることから,初期抵抗値 の ξ_c 以下での増加は,隣り合うCo層の間に反強 磁性的な磁化配列が生じたためと思われる。

Fig. 6 ξ dependence of (a)MR ratio, (b)saturation and initial resistivities and (c)remanence to saturation magnetization ratio, where ξ is the residual water to deposition rate ratio: $\xi = \langle P_{H2O} \rangle / R.$ このように, Co/Cu人工格子の物性は, ξ という ただ1つのパラメータで統一的に表されることが 明らかになった。MR比の大きな人工格子を得る ための重要なパラメータは, P_{base} ではなく, で ある。すなわち, P_{base} を小さく, Rを大きくして, $\xi \epsilon \xi_{\text{C}}$ 以下に保つことにより, MR比の大きな人 工格子を作ることができる。

5.まとめ

今回我々は,到達真空*P*_{base}と成膜速度*R*がCo/Cu 人工格子のGMRに及ぼす影響を調べた。特に, 成膜中の残留ガスに注目することで新たな知見を 得ることができた。

GMRは P_{base} とRの両者に強く依存し,また, P_{base} の変化は,成膜中の P_{H2O} と P_{H2} に影響を及ぼ すことが分かった。成膜中に見られた P_{H2} の増加 と P_{H2O} の減少や,膜中へのOの取り込み等を考慮 して,我々は,試料表面でH₂Oの解離吸着が起こ っているものと推測した。この推論に基づき,残 留水分圧/成膜速度比 ξ というパラメータを導入 した結果,Co/Cu人工格子のGMRや磁化特性など が, ξ というただ1つのパラメータにより統一的に 表されることが分かった。MR比は,あるしきい 値 ξ_c 以下で急激に向上する。 ξ は,磁性人工格子 のGMRを制御する上で,非常に重要なパラメー タの1つであると言える。

最後に,SIMS測定をしていただいた,青木裕子,鈴木正両氏に感謝の意を表したい。

参考文献

- Baibich, M. N., Broto, J. M., Fert, A., Nguyen Van Dau, F., Petroff, F., Eitenne, P., Creuzet, G., Friederich, A. and Chazelas, J. : "Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices", Phys. Rev. Lett., 61-21(1988), 2472
- Parkin, S. S. P., Bhadra, R. and Roche, K. P. : "Oscillatory Magnetic Exchange Coupling through Thin Copper Layers", Phys. Rev. Lett., 66-16(1991), 2152
- Mosca, D. H., Petroff, F., Fert, A., Schroeder, P. A., Pratt, W. P. Jr. and Laloee, R. : "Oscillatory Interlayer Coupling and Giant Magnetoresistance in Co/Cu Multilayers", J. Magn. Magn. Mater., 94(1991), L1
- Suzuki, M., Taga, Y., Goto, A. and Yasuoka, H. : "X-ray Diffraction and NMR Study on the Structure of Co/Cu Superlattices with Artificially Modified Interfaces", Phys.

Rev. B, 50-24(1994), 18580

- Suzuki, M. and Taga, Y .: "Role of Interfacial Roughness in the Giant Magnetoresistance in Co/Cu Superlattices", Phys. Rev. B, 52-1(1995), 361
- Suzuki, M., Taga, Y., Goto, A. and Yasuoka, H.: "The Critical Thickness of Fe Buffer Layer in Giant Magnetoresistance of Co/Cu Superlattices", J. Magn. magn. Mater., 126(1993), 495
- Suzuki, M., Ohwaki, T. and Taga, Y. : "Durable Giant Magnetoresistive Sensors Using Co/Cu Superlattices", Thin Solid Films, 304(1997), 333
- Shiga, T., Suzuki, M., Koichi, M. and Taga, Y.: "Effect of Residual Water on Giant Magnetoresistance in Co/Cu Superlattices", Jpn. J. Appl. Phys. Pt.2, 37-5B(1998), L580
- Dorner, C., Haidl, M. and Hoffmann, H.: "Giant Magnetoresistance of Co/Cu Multilayers with and without Fe Buffer Layers", J. Appl. Phys., 74-9(1993), 5886
- Kano, H., Kagawa, K., Suzuki, A., Okabe, A., Hayashi, K. and Aso, K. : "Substrate Temperature Effect on Giant Magnetoresistance of Sputtered Co/Cu Multilayers", Appl. Phys. Lett. 63-20(1993), 2839
- Nawate, M., Ohmoto, S., Imada, R. and Honda, S. :
 "Dependence of Magnetoresistance on Preparation Conditions and Annealing in Co/Cu Multilayers", IEEE Trans. J. Magn. Jpn., 9(1994), 38
- Tsunoda, M., Takahashi, M. and Miyazaki, T. : "Giant Magnetoresistance in Co/Cu Multilayers Prepared by Vacuum Evaporation and Sputtering Methods", IEEE Trans. J. Magn. Jpn., 9(1994), 133
- Kagawa, K., Kano, H., Okabe, A., Suzuki, A. and Hayashi, K. : "Effect of Oxygen Incorporation on Magnetoresistance in Co/Cu Multilayers", J. Appl. Phys., 75-10(1994), 6540
- Ueda, H., Kitakami, O., Shimada, Y., Goto, Y. and Yamamoto, M. : "Correlation of Giant Magnetoresistance with Interfacial Roughness in Co/Cu Superlattices", Jpn. J. Appl. Phys. Pt.1, 33-11(1994), 6173
- 15) Schmeusser, S., Rupp, G. and Hubert, A.: "Optimization of Giant Magnetoresistance in Ion Beam Sputtered Co/Cu Multilayers", J. Magn. Magn. Mater., 166(1997), 267
- 16) Thiel, P. A. and Madey, T. E. : "The Interaction of Water with Solid Surfaces", Surf. Sci. Rep. (Netherlands), 7-6/8 (1987), 211
- 17) Heras, J. M., Papp, H. and Spiess, W. : "Face Specificity of the H₂O Adsorption and Decomposition on Co Surfaces - A LEED, UPS, sp and TPD Study", Surf. Sci., 117(1982), 590
- 18) Grellner, F., Klingenberg, B., Borgmann, D. and Wedler, G.
 : "Interaction of H₂O with Co(1120) : A Photoelectron Spectroscopy Study", Surf. Sci., 312(1994), 143; "Electron Spectroscopic Study of the Interaction of Oxygen with Co(1120) and of Coadsorption with Water", J. Electron Spectrosc. Relat. Phenom. (Netherlands), 71(1995), 107
- 豊田中央研究所 R&D レビュー Vol. 35 No. 1 (2000. 3)

- 19) Bange, K., Grider, D. E., Madey, T. E. and Sass, J. K. : "The Surface Chemistry of H₂O on Clean and Oxygen-Covered Cu(110)", Surf. Sci., 136(1984), 38
- Spitzer, A., Ritz, A. and Luth, H.: "The Adsorption of H₂O on Cu(100) Surfaces", Surf. Sci., 152/153(1985), 543 (1999年10月1日原稿受付)

著者紹介

志賀孝広 Takahiro Shiga 生年:1971年。 所属:第1特別研究室。 分野:有機EL等の薄膜応用デバイスの研 究。 学会等:日本物理学会,応用物理学会会 員。

 鈴木基史 Motofumi Suzuki
 生年:1963年。
 所属:第1特別研究室。
 分野:薄膜のナノ構造と電気的,磁気的, 光学的性質に関する研究。
 学会等:日本物理学会,アメリカ物理学 会会員。
 工学博士。

多賀康訓 Yasunori Taga
 生年: 1944年。
 所属:第1特別研究室。
 分野:薄膜の研究・開発。
 学会等:アメリカ真空学会,電気学会会
 員。
 工学博士。