

Yoshihiro Nomura, Hiroshi Miyagawa, Taketoshi Fujikawa

要 旨

新しい直噴ガソリンエンジンの燃焼系開発を支援するため,標記解析手法を構築した。開発した手法は, 噴霧の壁衝突などの挙動を模擬する噴霧モデル,および未燃ガス温度と断熱火炎温度に着目した適用範囲 の広い燃焼モデル,さらに計算結果に応じて格子を効率良く細かく分割する解適応格子法より成る。この 手法を用いてスリットノズルによるファンスプレー燃焼系の成層燃焼過程を解析した結果,以下のことが 得られた。1)従来手法と比較して約1/3の計算時間で同等の計算精度が得られた。2)噴霧単体挙動,筒内の 混合気および燃焼過程は実験と良く一致する。3)ファンスプレーはその噴霧形態から生じる縦渦により, 高分散でありながら燃料の過度の拡散を防ぐという成層燃焼に適した特徴を持つ。また,これらの結果よ り本手法がエンジン開発ツールとして十分実用的であることが確認できた。現在エンジン開発に広く利用 されている。

キーワード ガソリンエンジン,数値解析,CFD,噴霧,燃焼,解適応格子

Abstract

A numerical simulation method was developed and applied for improving the new direct injection gasoline engine. The method consists of a spray wall impingement model, a combustion model based on the unburnt and burnt gas temperatures and a solution based local grid refinement technique. This method was applied for the analysis of the fan-shaped spray combustion system under late injection conditions. The following results were obtained: 1) Almost the same results were obtained in about one-third the CPU time compared to with the conventional method, 2) the calculated spray pattern, mixture formation and combustion processes are in good agreement with the measurements, and 3) The advantage of the mixture formation of the fan spray system became clarified. The eddy induced by the fan spray forms a mixture suitable for combustion with the least amount of overly lean mixture.

Keywords Gasoline engine, Numerical analysis, Computational fluid dynamics, Spray, Combustion, Adaptive grid

1.はじめに

Fig. 1 は直噴ガソリンエンジンの燃焼系^{1,2)}を示したものである。直噴ガソリンエンジンでは燃料をピストン頂面のキャビティ内に直接噴射し,点火栓周辺のみに可燃混合気を形成し成層燃焼を行う。アイドリングから中速・中負荷までの比較的広い運転条件において成層燃焼を実現することにより,従来のポート噴射エンジンに対して大幅な燃費向上が達成

できる。広い運転範囲,すなわちエンジン回転数や 燃料の噴射量が数倍変化するのに対して,点火栓近 傍に常に適切な燃料濃度の可燃混合気を形成するの はかなり難しい。そのため,これまでにも種々の燃 焼コンセプトが提案,実用化されてきた³⁻⁶⁾が,まだ 決定的なものが無くさらなる改良の必要がある。本 号で述べられているスリットノズルを用いた高分散 のファンスプレー燃焼系はその極めて有効な手段の 一つである。

特集

19

集

このスリットノズルを用いた新しいコンセプトを 実用化するためには,その特徴を最大限活かす燃焼 系(噴霧条件やキャビティ形状など)の開発が不可 欠である。従来,こういった開発には主にエンジン 試験や可視化エンジンを用いた筒内観察などの実験 的手法が用いられてきた。近年,燃焼系に対する要 求が厳しくなるとともに,種々の運転範囲において 筒内の現象を詳細に解析する必要が生じている。し かし,可視化実験では可視化できる範囲やエンジン 運転条件の範囲が限られることや,解析に時間がか かるといった問題がある。そのため3次元数値シミュ レーションによる筒内解析への期待が非常に高まっ ている。筒内解析については,著者らの報告を始め すでにいくつかの解析事例が報告されている⁶⁻⁹⁾。し かし,いずれも筒内における燃料濃度分布の定量的 な精度検証までには至っておらず,開発ツールとし て用いるのは精度上問題があった。

一方,数値解析のもう一つの課題として計算時間 短縮がある。前述のように直噴ガソリンエンジンで は広い運転範囲において成層燃焼を実現する必要が ある。したがって,例えばたった一つの噴霧パター ンの良し悪しを評価する場合でも,エンジン回転 数・負荷・燃料噴射時期・点火時期など数多くのパ ラメータの影響を評価する必要が生じる。通常1ケ ースの解析には数日が必要なため,最新の大型並列 計算機を用いても評価にはかなりの日数がかかるこ とになる。数値解析の実用性を高めるためには,計 算時間の大幅な短縮も必要なことがわかる。

このような数値解析の課題に対して,著者らは噴

霧や燃焼解析手法の改良と精度向上^{8,9},また計算の 精度検証にも使用し得る定量的な筒内混合気濃度の 計測手法を開発してきた¹⁰⁾。一方,計算時間の短縮 に対しては解析結果に応じて計算格子を細かく分割 する解適応格子法の開発を行ってきた¹¹⁾。本報はこ れらの手法およびその計算精度,さらにスリットノ ズルによるファンスプレー燃焼系の特徴を解析した 結果をまとめたものである。燃焼系改良への応用に ついては,本号後出(p.27)の論文で実験結果とと もに述べられるためここでは省略する。

2.数値解析手法の概要

- 2.1 噴霧モデル
- 2.1.1 壁衝突挙動

前述のFig. 1はスリットノズルを用いたファンスプ レー燃焼系の構成である。図からもわかるように筒 内の混合気分布は燃料噴霧がキャビティ壁に衝突し た後の挙動に大きく影響される。すなわち噴霧の壁 挙動を記述するモデルが極めて重要であることが推 察できる。Fig. 2 (a)はキャビティを模した壁面に噴 霧を衝突させた際の挙動を観察したものである。衝 突後の噴霧はキャビティ壁面上で広がった後に,先 端部は巻き込むように舞い上がるのが見られる。こ の時,個々の燃料液滴はFig. 2 (b)に示すような様々 な挙動を示すものと考えられる。これらの液滴挙動 については従来から数多くの研究が成されている が,残念ながら直噴ガソリンエンジンを対象とした ものは少なく,さらに実際に筒内での噴霧挙動を定 量的に計測した例は見当たらないようである。

このような状況のため、従来、高精度な筒内解析

Fig. 1 Combustion system of direct injection gasoline engine with fan-shaped spray.

Fig. 2 Spray motion and droplet behavior at the wall.

集

は難しいと考えられていた。それに対して著者らは、 筒内の噴霧挙動を示唆する重要な手掛かりとして小 池らの研究成果¹³⁾ に着目した。Fig. 3がその結果の 一つであり,燃料としてガソリンと極めて低沸点な イソペンタンとを用いた場合のエンジン性能を比較 したものである。可視化実験によるとガソリンでは かなりの燃料噴霧がキャビティ壁に衝突するのに対 して,低沸点のイソペンタンでは衝突する前にほと んど蒸発している。それにも関わらず,両者による エンジン性能は非常に似通ったものとなっているこ とから,火炎伝播時には両者の混合気分布の差は小 さいと考えられる。したがって,ガソリンにおける 壁面衝突後の大半の液滴はイソペンタンにおける蒸 発後の燃料蒸気とほぼ同じ挙動を示していると推察 される。すなわち壁面に壁衝した後の噴霧はあたか も衝突ガス噴流のような挙動を示していると考えら れる。これらの点を考慮すると,噴霧の壁衝突挙動 の記述にはガス噴流を模擬したWall Jet Model¹⁴⁾を基 本とすることが最適であると考えられる。

なおこれらの挙動は,噴射圧が高く微粒化に優れ る直噴ガソリンエンジンの噴霧の特徴である。例え ば噴射圧が低いポート噴射エンジンの噴霧では成立 しない。また,直噴ガソリンでも特に低温時におけ る未燃HCの挙動の解析,あるいは燃料の微粒化が 不十分な場合は必ずしも十分なモデルとは言えな い。そのため著者らはさらなる噴霧モデルの改良も 進めている¹²⁾が,誌面の都合上省略する。

2.1.2 液滴初期条件

本報で対象とするような燃焼系の初期検討段階で はノズル形状なども定まっておらず噴霧初期条件も 重要なパラメータである。液滴の初速度や粒径分布

Fig. 3 Effect of fuel property on indicated mean effective pressure.

については想定される噴射圧から従来の知見を基に 仮定する。噴霧角や噴射量の分布はシミュレーショ ンによる数値実験の評価パラメータとして任意に設 定できるようにしている⁸⁾。

2.2 燃焼モデル

2.2.1 火炎の形態

直噴ガソリンエンジン筒内の燃焼過程は,同じ直 噴であるディーゼルエンジンが拡散燃焼であるのと 異なり,大半はポート噴射エンジンと同様の火炎伝 播による予混合燃焼と考えられる。火炎は乱れによ りしわ状となり乱流火炎となるが,火炎面の局所で は層流燃焼速度で伝播する,いわゆるしわ状層流火 炎と仮定できる。このとき燃焼速度は局所の層流燃 焼速度と火炎面積との積で表されるため,燃焼モデ ルとしては局所の層流燃焼速度を表すモデルと乱れ による火炎面積の変化を表すモデルが必要である。

2.2.2 層流燃焼モデル

直噴ガソリンエンジンではポート噴射エンジンと 大きく異なり,成層燃焼時には筒内の燃料濃度が局 所的に大きく異なっている。また,大量のEGRガス が存在する。層流燃焼速度はこれらの濃度の影響を 強く受ける。しかしながら従来のモデルは主にポー ト噴射エンジンを対象としており,成層燃焼に適用 できる層流燃焼モデルは存在しなかった。

筆者らは以前に超希薄燃焼の実験的研究を行った際,層流燃焼速度が燃焼前の未燃ガスの温度と燃焼後の火炎温度の両者に支配されるという知見を得た¹⁵⁾。そこで,層流燃焼速度(*SL*)が未燃ガス温度(*Tu*)と断熱火炎温度(*Tad*)との中間的な反応温度(*Tr*)のみに依存するという以下のような層流燃焼モデルを提案した。

Tr = Tu + c(Tu + Tad)

 $SL = AP^{a} \exp\left(-E / RTr\right)$

このモデルにおいては燃料濃度およびEGRガスの濃 度は断熱火炎温度のみに影響する。従来の層流燃焼 モデルが燃料やEGRガスの濃度に依存した実験定数 を持っているの対し,このモデルはそれらを一切有 していないため,成層燃焼への適用が可能である。 この層流燃焼モデルは実際に広い燃料やEGRガス濃 度,さらには混合気の初期温度が大きく変わっても 成立することが確かめられている⁹⁾。

2.2.3 火炎面積

乱流火炎の記述にはCoherent Flame Modelを用いた⁹⁾。これは気流の乱れにより火炎面がしわ状になる時の火炎面積を予測するものである。基本的な考え方は従来のポート噴射エンジンの燃焼解析¹⁶⁾と同様であるため詳細は省略する。

集

2.3 計算プログラム

計算には汎用流体解析プログラムSTAR-CDを用いた。このプログラムはこれまでに実用的な流れ場において十分な精度であることを確認している¹⁰。これに上述の噴霧や燃焼のモデルをユーザーサブルーチンとして当社で組み込んだものを使用した。

3. 解適応格子法

本手法の基本的な考え方は比較的粗い格子を用い てまず計算を行い、その結果を基に、より細かい格 子が必要な部分のみを対象に要素を局所的に分割す るものである。当社で用いている手法は特に要素分 割に方向性を持たせることにより、精度向上と計算 時間の短縮という相反する条件を同時に満たすもの である¹⁰。Fig. 4に筒内解析に応用した結果を示す。 噴霧周辺で選択的に格子が細かくなっていることが わかる。

計算格子の混合気分布への影響を示したのがFig. 5 である。後述の精度検証からこの条件ではFig. 5 (b) に示す20万要素以上の細かい格子が必要であること がわかっている。それに対し, Fig. 5 (c) に示す解適 応格子法で必要な要素数は約1/4となり,またFig. 6 に示すように計算時間は約1/3であった。これによ り精度を確保しつつ計算時間の大幅な短縮が達成で き,初めて筒内数値解析を開発ツールとして実用化 することが可能になった。

Fig. 4 Calculation procedure with solution based grid refinement.

Fig. 5 Effects of computational grid on the fuel distributions.

(*Only from the injection start to ignition timing)

Fig. 6 Comparison of CPU time with a EWS of single CPU from BDC to TDC.

特 集

4.計算精度の検証

4.1 噴霧

Fig. 7は雰囲気圧を変えた時の噴霧挙 動について実験と計算を比較したもの である。実験による噴霧は高圧場にお いてはやや噴霧角が減少し,先端が丸 みを帯びた形状に変化している。計算 においては,雰囲気圧にかかわらず噴 霧の初期条件は同じ値を仮定している が,噴霧の形状は実験と良く一致した。

これは逆に考察すると、ノズルから の燃料噴射速度や方向は雰囲気圧に寄 らずほぼ一定であり、噴射後の液滴と 気流の相互作用により噴霧形状が大き く影響されていると考えることができ る。雰囲気圧が0.5MPaでも空気密度は 燃料密度の1/100程度であり、ノズル内 流れに対して雰囲気圧がほとんど影響 しないのは極めて妥当な結論と思われ る。

以上,計算による噴霧形状が実験と 良く一致したことから,前述の液滴初 期条件の設定方法が妥当なものである ことがわかった。したがって,噴霧角 などをこの条件からさらに変化させる ことにより,種々の噴霧形状を模擬す ることが可能になった。

4.2 混合気形成過程

Fig. 7に示したものと同様なファンス プレー噴霧を用いて筒内の解析を行 い,実験と比較検討した結果をFig. 8, 9,10に示す。実験にはガラスピストン を用いた可視化単筒エンジンを用い た。エンジン回転数は1200rpm,燃料 噴射量は12mm³一定とした。その他実 験条件などの詳細は後出(p.27)の藤 川らの報告を参照願いたい。

Fig. 8は混合気形成過程を示したもの である。LIF実験による混合気分布は 点火位置における水平断面の分布を, 計算結果は同じく水平断面とシリンダ 中心における垂直断面を示した。実験 によると混合気はキャビティ壁に衝突 後約-40degATDCで点火位置に到達し ている。計算でもその時期はほぼ一致 している。その後の混合気の形成過程

Experiment

Calculation with conventional DDM

Fig. 7 Comparison of fan spray shapes.

(Injection : -58degATDC, Ignition : -20degATDC)

Fig. 8 Measured and calculated fuel distributions in the cylinder at mixture formation processes.

特 集 を比較するとやや計算の方が実験より動きが遅い傾向があるものの混合気挙動はほぼ一致している。この時の点火位置を通る中心線上の濃度分布を実験と計算で比較したのがFig.9である。混合気到達直後の-35degATDCでは誤差が大きいものの,その後の両者の差は20%程度である。この程度の誤差であれば,十分ではないがほぼ混合気分布が予測できるレベルと言える。

4.3 燃焼過程

Fig. 10は燃焼過程における未燃混合気の挙動を示

したものである。実験によるとシリンダのほぼ中央 で点火された混合気はまずキャビティ内を噴射弁側 に伝播し,燃焼後期の未燃燃料は主にキャビティ端 部に存在することがわかる。計算でも同様な燃焼過 程となっている。前述のように混合気予測は若干誤 差が大きく,燃焼解析はその誤差の影響を大きく受 けるため定量的な解析はまだ難しい面がある。しか しながら,ここで示したように燃焼過程の定性的な 予測はほぼ可能と言える。

(Injection : -63degATDC, Ignition : -31.5degATDC)

Fig. 9 Comparison of equivalence ratio of calculation and experiment.

集

5.ファンスプレーによる混合気形成の特徴

以上述べてきた数値解析手法を用いて,ファンス プレーによる混合気形成を解析した結果を以下に示 す。今回はその特徴を明確にするために,従来から 広く用いられてきたスワール弁による噴霧と比較検 討した。Fig. 11は計算に用いた噴霧のパターンを示 したものである。スワール弁に相当する噴霧として は円錐形状を仮定した。

Fig. 12が混合気分布および速度ベクトルを比較し たものである。壁面衝突直後の-52degATDCにおい て両者を比較すると以下のことがわかる。壁衝突前 の燃料蒸気はスワール弁噴霧の方が高さ方向に厚 い。また図では示されていないがFig. 11からもわか るように,横方向にはスリット弁より狭くなってい る。ところがキャビティ壁に衝突後は全く逆になり、 壁面上で大きく横方向に広がり、その厚みは非常に 薄くなる。一方,ファンスプレーではその噴霧形状 から噴霧の上下で強い縦渦を生じる。その縦渦はキャ ビティ壁衝突後も残り,混合気を厚く巻き上げるよ うに働く。結果として-22degATDCでは点火栓近傍 にボール状の混合気を形成する。同時期にスワール 弁噴霧の混合気分布を見ると垂直断面ではほぼ同等 の濃度分布であるものの,水平断面をみるとキャビ ティ端部まで燃料が拡散し,かなり希薄な混合気が 形成されていることがわかる。Fig. 10の燃焼過程か ら推察してこのようなキャビティ端部への燃料の過

Cone spray (Swirl injector)

Fan spray (Slit injector)

-58degATDC (Injection : -63degATDC)

Fig. 11 Comparison of spray pattern.

度の拡散は燃焼面から好ましいものとは言えない。 以上ファンスプレー噴霧による混合気形成をまと めると,その特徴的な噴霧形態から生まれる縦渦に より,高分散でありながら燃料の過度の拡散を防ぎ, 点火位置に適切な混合気を形成するという成層燃焼 に極めて有利な特徴を持つことがわかった。

6.まとめ

噴霧および燃焼モデルの改良と解適応格子法によ り,高精度でありながら計算時間の短い筒内数値解 析手法を構築した。この手法をファンスプレー燃焼 系に適用し以下のことを得た。

Cone spray (Swirl injector)

Fan spray (Slit injector)

Fig. 12 Effects of spray pattern on the mixture formation.

(1) 従来手法と比較して計算時間を約1/3に短縮す ることができた。

(2) 噴霧単体挙動,筒内の混合気および燃焼過程に ついて実験との良い一致が得られた。

(3) ファンスプレーはその噴霧形態から生じる縦渦 により,高分散でありながら燃料の過度の拡散を防 ぐという成層燃焼に適した特徴を持つことがわかっ た。

以上の結果より,特に成層混合気形成の解析についてはほぼ実用段階に達したと言える。応用例については本号次の報告を参照願いたい。

参考文献

- Koike, M., et al. : SAE Tech. Pap. Ser., No.2000-01-0530 (2000)
- Kanda, M., et al. : SAE Tech. Pap. Ser., No.2000-01-0531 (2000)
- 3) Harada, J., et al. : SAE Tech. Pap. Ser., No.970540(1997)
- 4) Kume, T., et al. : SAE Tech. Pap. Ser., No.960600(1996)
- 5) Takagi, Y., et al. : SAE Tech. Pap. Ser., No.980149(1998)
- 6) Duclos, J. M., et al. : Proc. COMODIA98, (1998), 335
- 7) Shu, E. S. : SAE Tech. Pap. Ser., No.1999-01-3657(1999)
- 8) 野村佳洋,藤川武敏,ほか3名:第76回日本機械学会全 国大会講演論文集, No.98-3(1998), 513
- 9) Miyagawa, H., et al. : Smart Control of Turbulence, (2000), Springer Verlag, Tokyo
- 10) Fujikawa, T., et al. : JSME Int. J., Ser. B, 42-4(1999), 760
- 11) 野村佳洋,大久保陽一郎:自動車技術会学術講演会前 刷集,No.952(1995),231
- 12) Tomoda, T., et al. : COMODIA2001 [CD-ROM], (2001)
- 13) 小池誠, 鈴置哲典, ほか4名: 自動車技術会学術講演会 前刷集, No.982(1998), 103
- 14) Naber, J. D., et al. : SAE Tech. Pap. Ser., No.880107(1988)
- 15)野村佳洋,大久保陽一郎,ほか1名:日本機械学会論文 集,B編,57-534(1991),710
- 16) Miyagawa, H., et al. : Proc. COMODIA98, (1998), 227

(2001年11月29日原稿受付)

著者紹介

 野村佳洋 Yoshihiro Nomura
生年:1960年。
所属:直噴ガソリン研究室。
分野:エンジン筒内現象の数値解析 (CFD)。
学会等:日本機械学会,自動車技術会, 日本ガスタービン学会会員。
工学博士。

 宮川 浩 Hiroshi Miyagawa
生年:1966年。
所属:直噴ガソリン研究室。
分野:エンジン筒内現象の数値解析 (CFD)。
学会等:日本機械学会,自動車技術会会
員。
2000年日本機械学会奨励賞受賞。

藤川武敏 Taketoshi Fujikawa 生年:1957年。 所属:直噴ガソリン研究室。 分野:エンジン筒内現象のレーザ計測。 学会等:日本機械学会,自動車技術会会 員。