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要　　旨

Abstract

不均一静電場中における電子状態計算を目的と
してGauss-FE混合基底法の開発を行っている。
有限要素法 (FEM) で用いられる基底関数 ( 以下，
FE基底関数 ) は局所基底のため高い自由度を具
備しており，不均一場によって歪んだ波動関数を
表現するのに適していると考えられる。原子核付
近での波動関数の急峻な変化を表現するため，原
子核近傍に局在したGauss関数をFE基底関数と組
み合わせた。本計算手法の適用対象の一つとして
は，ナノ多結晶体中の水素原子の電子状態計算を
想定している。
最初に，Gauss-FE混合基底法を水素原子の電子
状態計算に適用し，Gauss関数とFE基底関数が相

互補完して波動関数を表現することを確認した。
次に，2つの金属結晶粒に挟まれた粒界に水素原
子が位置していることを想定して，2つの導体間
に水素原子を設置した。導体モデルとしては球体
とフェーズフィールド法で作成した多結晶組織か
ら抽出した結晶粒を用いた。導体球を用いたモデ
ル計算では，球径が5nm以下の場合，水素原子の
電子の固有値に粒径依存性が現れた。結晶粒を用
いたモデル計算では，水素原子の波動関数は結晶
粒の複雑な形状に依存した歪みを示した。FE基
底関数は，不均一静電場による波動関数の歪みを
表現するのに有効であった。

We discuss herein the effectiveness of the
Gaussian-finite element (FE) mixed basis method
for the purpose of calculating the electronic state
under an inhomogeneous electrostatic field.  FE
basis functions, which possess high degrees of
freedom, are combined with Gaussian basis
functions in order to describe the steeply varying
electron distribution near the nuclei.  First, this
method was applied to the electronic state
calculation for a hydrogen atom without external
fields.  It was shown that FE basis functions
automatically expressed the part of the wave
function which can not be expressed using only
Gaussian basis functions. Secondly, the model, in
which a hydrogen atom was positioned between
two conductors, was applied in order to discuss

the electronic state of hydrogen in the grain
boundary of the polycrystalline metal.  The
spherical conductors and the crystal grains were
adopted as conductors of nanometer scale.  The
crystal grains were extracted from the
polycrystalline structure by 3-D Phase Field
simulation.  The eigenvalue of the hydrogen atom
was found to depend on the diameter of the
spherical conductors when the diameter was less
than 5 nm.  The wave function of the hydrogen
atom was distorted due to the complicated grain
configuration.  The FE basis functions effectively
represented the wave function distorted by the
existence of inhomogeneous electrostatic fields.
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1.  Introduction

Hydrogen diffusion in metals is influenced by
short-range disorders, such as lattice defects, and
long-range disorders, such as the geometry of grain
boundaries, especially for nano-polycrystalline.1, 2)

Therefore, the energy dispersion of the hydrogen
occupying site arises due to the external electrostatic
field induced by the disorders.

Finite element method (FEM) has been regarded
as one of the possible techniques for electronic state
calculation taking into account this type of
inhomogeneous field, because of the high
applicability to arbitrary boundary conditions and
high degrees of freedom of the basis functions.  The
FEM has already been applied to the electronic state
calculations.3, 4, 5) However, in order to achieve high
accuracy using only FEM, the required number of
basis functions is extremely large.  The sharp
variation in a wave function near nuclei makes this
problem more serious.  This situation indicates that
FEM has a high computational cost.  A number of
improved techniques, such as the adoptive mesh5)

and pseudopotential6) techniques, have been
proposed.  However a difficulty still remains in the
case of the electronic state with the large electron
density gradient near the nucleus such as metal
atom.  Therefore, we attempted to reinforce FE basis
functions by combining Gaussian basis functions.
We think that the high applicability of FE basis
functions to an arbitrary inhomogeneous field can be
kept in this mixed basis method by using appropriate
Gaussian basis components, which have finite
amplitude only near the nucleus.  Moreover, it is
possible to combine this method and the above
technique, adoptive mesh or pseudopotential.

Section 2 outlines this method.  Section 3. 1
presents, as an example of the efficiency of this
technique, the electronic state calculation of a
hydrogen atom without external fields.  Sections 3. 2
and 3. 3 demonstrate the electronic state of a
hydrogen atom under the external electrostatic
potential that originated from inhomogeneous
structures on the nanometer scale. In these sections,
the electronic state of hydrogen in the grain
boundary of the nano-polycrystalline metals is
discussed.  Through the use of plane waves, a

supercell model has been used for the electronic
structure calculation of the grain boundary with
impurities.7) However, the actual grain boundary
with limited curvature appears to differ from a 2-D-
plane-like boundary which has been adopted by
supercell model under the mesoscale structure.  In
the present paper, the spherical conductor model or
the crystal grains, extracted from polycrystalline
structure by 3-D Phase Field simulation, are
examined as inhomogeneous structures of nanometer
scale.

2.  Gaussian-FE mixed basis method

We expand the wave function as the linear
combination of Gaussian basis functions ψG =
(Sg1,...,Sgn) and FE basis functions ψF = (Sf1,...,Sfm) in
the form:

ψ(r) = C · ϕ, · · · · · · · · · · · · · · · · · · · · · · · · · · · (1)
where

C = (Cg1,...,Cgn, Cf1,...,Cfm),
ϕ = (ϕ1,...,ϕn + m) = (ψG, ψF) = (Sg1,...,Sgn, Sf1,...,Sfm).

The coefficient C is determined by solving the
Schrödinger-type equation described later.

First, for simplicity, we explain the FE basis
function for the case of a one-dimensional grid.  In
the present study, we used the first-order basis
function in the form:

Sf (x) = 1 - |x|   with |x| ≤ 1.· · · · · · · · · · · · · · · · (2)
This is the simplest formulation.  Figure 1 shows

the shape of this function in comparison with
Gaussian basis functions.  In contrast with Gaussian
basis functions ranging over an element, this basis
function extends only out to the neighboring nodal
points.

On a three-dimensional uniform grid, we use the
products of the one-dimensional functions in the
form:

Sf (r) = Sfx(x)Sfy(y)Sfz(z). · · · · · · · · · · · · · · · · · · (3)
Eight FE basis functions are assigned to each

element.
As Gaussian basis functions appropriate for

hydrogen atom, the following functions8) have been
proposed:

ψG = Cg1Sg1 + Cg2Sg2, · · · · · · · · · · · · · · · · · · · · (4)
where

Sg1 = β1i f1i α1i,  l,  m,  n ,  Sg2 = f21 α21,  l,  m,  n ,∑
i = 1

3



fi (αi, l, m, n) = xlymzn exp(-αi r
2 ),

α11 = 18.731088, α12 = 2.8253952, 
α13 = 0.64012176, α21 = 0.161277552, 
β11 = 0.0334946, β12 = 0.2347270, 
β13 = 0.8137570
l = m = n = 0, rH : position vector relative to

nucleus position.
This basis function set is generally referred to as

31G.  In order to certify the effectiveness of the
contribution of FE basis functions, the following
basis functions, which reduced the number of basis
functions, were also examined: 

3G : ψG = Cg1 Sg1 = Cg1 ( β11 f11 + β12 f12 + β13 f13),
2G :  ψG = Cg1 ( β11 f11 + β12 f12 ).
In the present study, electronic state calculation is

carried out using the Hartree approximation.
H · C = EU · C, · · · · · · · · · · · · · · · · · · · · · · · · (5)

where

and ZH is 1.0.  The contributions from all elements
are assembled to construct the global matrices Hij

and Uij. Vad(re) is the additional external potential

Uij = drϕiϕj,

Hij = drϕi - 1
2

 ∇ 2
 + - ZH

| re - RH |
 + Vad(re) ϕj,

due to the mesoscale inhomogeneous structure.  The
generalized eigenvalue problem, Eq. (5), was solved
by combining the conjugate gradient (CG) method9)

and the inverse iteration method.10)

3.  Results and discussion

3. 1 Electronic state of hydrogen atom
The electronic state calculations for a hydrogen

atom were performed in order to investigate the
contribution of FE basis functions combined with
various Gaussian basis functions.  The number of
nodal points per dimension was 23.  The element
width was set to 0.5 bohr (1 bohr = 0.05291 nm) for
all elements.  The shape of this calculation region
was cubic at 11 × 11 × 11 bohr3.  Table 1 shows the
eigenvalues of the hydrogen atom using various
basis functions.  Table 2 shows the contribution of
Gaussian basis functions ψG and FE basis functions
ψF.  The wave function of the hydrogen atom is not
completely expressed by 2G alone, because 2G
cannot express a spread part of the wave function.
Similarly, approximation of only FE basis functions
under this calculation condition also has low
accuracy, because the basis functions cannot express
a steeply varying part of the wave function near the
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Fig. 1 Schematic representation of Gaussian and 1-D
FE basis functions. FE basis functions on
neighboring nodal points are shown by broken
lines.

Table 1 Eigenvalues (in hartree, 1 hartree = 2.6255 × 106

J/mol) of the hydrogen atom using various
Gaussian basis functions or using the
corresponding Gaussian-FE mixed basis
functions.  The eigenvalue of FE basis functions
alone was -0.4826 (hartree).

Gaussian Gaussian -FE

2G -0.4913

3G -0.4979

31G -0.4954 -0.4994

Exact -0.5

Table 2 Contribution of Gaussian basis functions ψG and
FE basis functions ψF to the electron density ψ 2

of the hydrogen atom: ψ 2 = (ψG + ψF)2.

Basis Function ψ 2 ψ 2 2ψGψF

2G-FE 0.0152 0.8872 0.0976

3G-FE 0.1903 0.4352 0.3745

31G-FE 1.2197 0.0151 -0.2348

.
.

G F

H

.
.
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nucleus.  On the other hand, the eigenvalue of 2G-
FE mixed basis functions has almost the same
accuracy as 31G alone.  This is because 2G basis
functions express the steeply varying part and FE
basis functions express the spread part, as shown in
Fig. 2(a).  Unlike 2G, 31G can express an accurate
wave function, as shown in the Fig. 2(b).  For 31G-
FE mixed basis functions, the contribution of FE
basis functions decreases but remains in the spread
part.

As a result of these calculations, FE basis
functions automatically compensate for the part of
the wave function which cannot be expressed by
Gaussian basis functions alone.

3.  2  Hydrogen atom between two spherical
conductors

Figure 3 shows the schematic representation of
the spherical conductor model.  This model, in
which a hydrogen atom is positioned between the
two spherical conductors, is based on the assumption
that metal atoms surrounding the hydrogen atom can
be treated as a continuous conductive medium.  The
distance between the conductors (a in Fig. 3) was set
to 2.5 bohr, roughly corresponding to the covalent

bond radius of metal atom.  Hydrogen atom is at the
center of the line connecting the center of gravity of
the conductors.  The calculation scheme is as
follows.

I. Sources of the electrostatic field are introduced
by the charge distribution deduced from the electron
and the nucleus charge of the hydrogen atom.
Furthermore, the image charge is induced in both
conductors to make the potential constant anywhere
in the conductor.  The electrostatic potential inside
conductors and at the boundary were determined by
analytical calculation using the abovementioned
charges.  The potential of the remaining region, V(r) ,
was determined by solving the following Poisson
equation using the finite differential method (FDM).

∇ 2V(r) = - 4πρ(r) / εr · · · · · · · · · · · · · · · · · · · · (6)
Vad(re) (in Eq. (5)) is equal to the potential

obtained by subtracting the potential due to the
electron and the nuclear charge of the hydrogen
atom from V(r).

II. The electronic state calculation of the hydrogen
atom was performed according to Eq. (5).  In this
section, 3G-FE basis functions were used.  The
calculation conditions of FE basis functions are the
same as those in Section 3. 1 .  In order to
compensate the total sum of charges of the
conductor, the electron density of the hydrogen atom
spreading into the conductor was uniformly

Fig. 3 Schematic representation of the spherical
conductor model.  One hydrogen atom is
positioned between the two spherical conductors.
Relative dielectric constants εr are respectively
set to infinity in the conductor regions, and 1.0 in
the region surrounding conductors.

Fig. 2 Wave function of the hydrogen atom: (a) using
2G-FE mixed basis functions and (b) using 31G-
FE mixed basis functions.  The abscissa nFEM

denotes the number of nodal points.
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redistributed over the conductor surface.  This
process (from I to II) was iterated until self-
consistency was achieved.

Figure 4 shows the relationship between the
eigenvalue of the hydrogen atom and the conductor
diameter (d in Fig. 3).  There is no dependence of
the eigenvalue on the diameter of spherical
conductors when the diameter is larger than 5 nm.
This suggests that 2-D-plane-like boundary using in
the supercell model can be used for the problem of a
hydrogen atom in the polycrystalline structure
composed of grains of diameter larger than 5 nm.
On the other hand, the eigenvalue was slightly
dependent on the diameter when the diameter was
less than 5 nm.  Therefore, the electronic state
calculation on this scale appears to require explicit
consideration for the effect of grain configuration.

Figure 5 shows the contour map of the wave
function of the hydrogen atom inserted between two
spherical conductors having a 10 nm diameter.  The
wave function was distorted by the existence of the
spherical conductors.  Figure 6 shows the difference
between the contribution of FE basis functions
without external field and that in the spherical
conductor model having a 10 nm diameter.  The
contribution increases in the inter-conductor region
(red line in Fig. 6) and decreases inside conductors
(blue line in Fig. 6).  The distortion of the wave
function in Fig. 5 is mainly expressed by FE basis
functions. 
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3.  3  Hydrogen atom under polycrystalline-like
boundary condition

In this section, an example of the wave function of
a hydrogen atom in metallic polycrystalline-like
boundaries is depicted.  The mesoscopic structure
was obtained from the 3-D Phase Field method11)

(PFM), which is based on the numerical evaluation
of the time-dependent Ginzburg-Landau equation.
The polycrystalline mesoscopic structure adopted

Fig. 6 Contour map of the wave function difference
∆ψF : ∆ψF = ψF (without external field) - ψF (in
the spherical conductor model having a 10 nm
diameter).

Fig. 5 Contour map of the wave function of the
hydrogen atom inserted between two spherical
conductors having 10 nm diameter.  The gray
region denotes the conductor.

Fig. 4 Relationship between the eigenvalue of hydrogen
atom and the conductor diameter (d in Fig. 3).
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here is shown in Fig. 7.  Figure 8 shows the
configuration of two grains extracted from PFM.
Hydrogen atom was inserted into the grain
boundary.  The electrostatic potential and the
corresponding wave function was obtained by the
same procedure in Section 3. 2.

Figure 9 shows the difference between the wave
function in the spherical conductor model having a 2
nm diameter and that in PFM structure.  The wave
function was distorted depending on the complicated
grain configuration.  This result is introduced by the
distributed electron charge and the nuclear charge of
the hydrogen atom and the mesoscopic metallic
boundary condition. 

The present study is an introductory study of the
electronic state calculation with the complex
inhomogeneity of a mesoscopic environment.  The
wave function is expected to be significantly
influenced by the configuration of an inhomogeneous
electrostatic field.  It was found that FE basis
functions, which possess high degrees of freedom,
effectively expressed the distortion of the wave
function within the present examination.  Therefore,
this mixed basis method would be available for the
electronic state calculation in an inhomogeneous
electrostatic field.

4.  Conclusions

We have examined the effectiveness of the
Gaussian-FE mixed basis method for the purpose of
calculating the electronic state under an
inhomogeneous electrostatic field.  Based on the
present findings, the following conclusions were
obtained.  First, this method was applied to the
electronic state calculation for a hydrogen atom
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Fig. 8 Configuration of two grains extracted from the
polycrystalline structure.  One hydrogen atom
was inserted into the grain boundary.  The
numbers in circles are corresponding to those in
Fig. 7.

Fig. 9 Contour map of the wave function difference ∆ψ
: ∆ψ = ψ (in the spherical conductor model
having a 2nm diameter) - ψ (in the Phase Field
grain model).  Gray lines denote the interface
between grain region and grain boundary region,
and yellow dot denotes the position of the
hydrogen atom.

Fig. 7 Polycrystalline mesoscopic structure obtained
from 3-D Phase Field simulation.  The grains of
1 and 2 were used as inhomogeneous structure
for the electronic state calculation of a hydrogen
atom.
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without external fields.  FE basis functions
automatically expressed the part of wave function
which can not be expressed using only Gaussian
basis functions.  Second, the model, in which a
hydrogen atom was positioned between two
conductors, was applied in order to discuss the
electronic state of hydrogen in the grain boundary of
the polycrystalline metal.  The spherical conductors
or the crystal grains were adopted as conductors of
nanometer scale.  The crystal grains were extracted
from the polycrystalline structure by 3-D Phase
Field simulation.  The eigenvalue of the hydrogen
atom was found to depend on the diameter of the
spherical conductors when the diameter was less
than 5 nm.  The wave function of the hydrogen atom
was distorted due to the complicated grain
configuration.  FE basis functions effectively
represented the wave function distorted by the
existence of inhomogeneous electrostatic fields.
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