電子ジャーナル 技報R&Dレビュー

要旨集●Vol.38 No.1(2003年3月発行)
 研究報告
p.48

唐澤正宜

 The main component concentrations of fine particulate were measured at 17 sites by 24-hr sampling for two weeks by JCAP (Japan Clean Air Program) in the winter of 1999. The following results were obtained by multivariate data analysis using the data sets.

(1) The ratio of fine particulate to SPM was about 2/3 and a large difference between the observation points was not observed although some low values were indicated in the clean region.

(2) The fluctuation factor and Max/Min of Cl- concentration for space variation were the highest and those of SO42- were the lowest among the six components.

(3) The deviations of space variation for Cele (elemental carbon) and NO3- concentrations were larger than for SO42- concentrations. The peak concentration of Cele and NO3- for a site sometimes appeared at different dates. The fluctuation factor of space variation for the SO42- concentrations was smaller than that of time variation. SO42- concentration is thought to change similarly in a wide mesoscale area.

(4) Three factors were extracted by factor analysis of all data. Factor 1 is representative of the ammonium salt that is the main component of the secondary formatted inorganic particulate. Factor 2 is representative of the combustion source including vehicle exhaust and the secondary formatted organic particulate. Factor 3 is representative of sea salt and fine soil particulate.


  JCAP (Japan Clean Air Program) は1999年冬季に微小粒子中の主要成分濃度を関東地域の17地点において,1日毎に2週間測定した。このデータセットを用いて多変量解析を行い,次のことを明らかにした。

(1) 微小粒子のSPMに対する質量濃度比は約2/3であり,清浄地域はわずかに小さい値を示したものの,都市域と大差はなかった。

(2) 測定期間中の各成分の平均値を地点別に求めると,地点間の振動係数と最大値/最小値は6主要成分中Cl- が最も大きく,SO42- は最も小さい値を示した。

(3) Cele ( 元素状炭素 )とNO3- の日平均濃度の空間変動はSO42- のそれよりも大きかった。同じ測定局でもCeleとNO3- の極大値は日付の異なる場合があった。SO42- の空間変動は明らかに時間変動よりも小さく,メソスケール内でかなり同じ濃度レベルで変化すると予測される。

(4) 全測定データを用いた因子分析により,3因子を抽出した。第1因子は無機イオンの二次生成を,第2因子は自動車排気粒子を含む燃焼系発生源と有機二次粒子を,第3因子は海塩粒子と土壌粒子の微小粒径区分をそれぞれ代表することがわかった。

 

(224 k)

TOP▲


P.57

竹川秀人

A temperature-controlled smog chamber was used to investigate the temperature dependence of secondary organic aerosol (SOA) formation from photochemical reaction of three aromatic hydrocarbons (toluene, m-xylene and 1,2,4-trimethylbenzene). The experiments were performed at 283 K and 303 K for each hydrocarbon. A higher SOA yield was obtained at lower temperature and at a higher concentration of SOA generated. The relationship of SOA yield to temperature and SOA concentration is expressed by a gas/particle partitioning absorption model considering temperature dependence. Under the condition of the same SOA concentration, the SOA yield at 283 K was approximately twice that at 303 K. It has been clarified experimentally that temperature is one of the most important factors in SOA formation. The SOA yields of the aromatic hydrocarbons were higher in the order of toluene, m-xylene and 1,2,4-trimethylbenzene. The order of the SOA yield was the reverse of the reaction rate constant with OH radicals, which indicated the probability of SOA being generated by the secondary reaction.


 温度制御可能なスモッグチャンバーを用いて,芳香族炭化水素 ( トルエンおよびm-キシレン,1,2,4-トリメチルベンゼン ) の光化学反応による二次有機エアロゾル (SOA) 生成の温度依存性に関する研究を実施した。温度が低く,生成した有機粒子濃度が高いほど,SOA収率は高くなった。温度依存性を考慮したガス/粒子分配吸収モデルにより,SOA収率を温度および有機粒子濃度の関数として定式化した。等しい有機粒子濃度条件では,283KにおけるSOA収率は303Kの約2倍であり,温度がSOA生成に対して重要な因子であることを明確にした。SOA収率は,高い順にトルエン,m-キシレン,1,2,4-トリメチルベンゼンであった。OHラジカルとの反応速度定数が小さい芳香族炭化水素ほどSOA収率は高く,芳香族炭化水素は二次反応によりSOAを生成する可能性が示唆された。

 

(120K)

TOP▲