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Abstract

-

We have been developing a process design
CAE system to predict die wear life in the process
design stage for the hot forging of steel.  Our goal
is to reduce production costs by shortening the
development period, while maximizing the life of
the die.  In our system, we use an expression that
defines the relationship between die wear, die
strength, and friction factors, such as die pressure,
sliding speed, and the coefficient of friction.  To
predict the die wear life with high precision, it is
important to obtain the actual coefficient of
friction and the heat transfer coefficient for use in
a die temperature analysis that considers both
heat and deformation.  It is also important to

clarify the effect of these friction factors on the
die softening and wear.  For this study, we
considered the use of a hot forging die with a
forging machine that is typically used for the
production of connecting rods and so on.  We
determined the lubricant adhesion and the heat
transfer coefficient variation that results from
spraying lubricant, by performing a lubricant
spray model test.  Moreover, we devised a new
hot ironing test to obtain the relationship between
the coefficient of friction and the lubricant
conditions, as well as the relationship between the
friction factors and die temperature.
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1. Introduction

To improve our competitiveness in the hot forging
of steel parts, it is vital for us to reduce our
production costs.  If we can predict the die wear life,
which constitutes about 70 % of the total hot forging
die life, we will be able to reduce our production
costs by shortening the development period and by
being able to design long-life dies.  Therefore, we
are developing a process design CAE system1) to
predict the die wear life in the process design stage
of hot forging.  In this system, we use an expression
that links die wear, die strength, and friction factors
such as die pressure, sliding speed, and the
coefficient of friction.  To predict the die wear life
with high precision, it is important for us to obtain
the actual coefficient of friction and the heat transfer
coefficient so that we can perform a die temperature
analysis that considers both heat and deformation.  It
is also important for us to clarify the effects of the
friction factors on the die softening and wear.

This paper considers a hot forging die that is used
with a forging machine, which is typically used for
producing connecting rods and so on.  We used a
lubricant spray model test to analyze the lubricant
adhesion and the heat transfer coefficient.
Moreover, we present a newly devised hot ironing
type test and investigate the influence of the
coefficient of friction on the lubricant conditions, as
well as the relationship between the friction factors
and the die temperature.

2. Estimation methods

2. 1  Lubricant spray model test
The lubricant spray model test method is

illustrated in Fig. 1.  We used an air-powered spray
gun to reproduce the spray conditions applied in
actual production.  We sprayed lubricant for 0.5
seconds onto the test die surface (diameter 240 mm

thickness 20 mm, hot die steel), that was being
heated on a hot plate.  At the center of the test die
surface, we embedded a lubricant adhesion
measurement die or a cooling thermometry die
(diameter 20 mm thickness 20 mm).  We used a
white-type lubricant that we diluted with water.

The conditions of the lubricant spray model test
are listed in Table 1.  The spray mist density was

defined as the amount of lubricant that reaches the
die per unit time and per unit area.  We installed a
water-absorbing seal in the plastic case (inner
measurements 32 mm 32 mm 9 mm), and
estimated the spray mist density from the change in
the weight of the sprayed area.  We measured the
spray pressure on the die by using a small pressure
sensor (rated capacity 0.2 MPa) with an outer
diameter of 6 mm.  The 0.4-mm diameter holes in
the cooling thermometry die were drilled from the
opposite side of the test die surface to a depth of 0.5
mm, 1 mm, and 2 mm.  A Chromel-Alumel sheathed
thermocouple with a diameter of 0.25 mm was
inserted into the hole, and then capped with a
conductive resin material.

We determined the amount of lubricant that had
adhered from the change in the weight of the
lubricant adhesion measurement die and by visual
observation of the center of the test die surface.  The
heat transfer coefficient was determined from the
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Fig. 1 Lubricant spray model test.
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Table 1 Lubricant spray model test conditions.



relationship between the temperature measured at a
depth of 0.5 mm from the test surface, the
temperature 0.5 seconds after the start of the test,
with the actual computation being done using
1-dimensional axial symmetry model heat-
conduction analysis.

2. 2  Hot ironing test
We devised a new hot ironing test, which is

illustrated in Fig. 2.  In this ironing test, a constant
sliding load is applied to the ironing die surface by
using a billet with a square bar.  Moreover, by
changing the billet length, we can fix the contact
time, sliding velocity, and the sliding length used for
the ironing test.  While many ironing-type friction
evaluation tests2, 3) have been proposed, our new test
can measure both the coefficient of friction and the
inner temperature of the ironing die.

The heated billet of square bar shape are placed on
bending dies, and then immediately subjected to the
impact of a punch, which deforms them into a U-
shape.  Then, the outside face of the billet are ironed
with ironing dies with a gap, the width of which is
narrower than the thickness of the billet.  The billet
is heated for about 60 s using high-frequency
induction heaters until it reaches the test
temperature.  The configuration of the punch,
bending die, and the ironing die used for the
thermometry are shown in Fig. 3.  The inner
temperature of the ironing die is measured in the
same way as in the lubricant spray model test.
Under all the test conditions, after the billet has been
heated to 150 oC, it is dipped into graphite lubricant
to reduce the amount of oxidation.  The ironing dies
and the bending dies are heated using a rod heater

embedded into the base of the die.  The coefficient
of friction is calculated using the formula shown in
Fig. 4.  The load components in the sliding direction
and the vertical direction, produced on the sliding
surface of the ironing die are calculated from the
ironing load and the ironing lateral load.  Using the
actual measurements obtained at depths of 0.5 mm
and 1 mm, the die surface temperature is calculated
using a formula which was approximated from the
difference for the unsteady state heat conduction
equation for one dimension.  The lubricant spray
conditions used in the hot ironing test are listed in
Table 2.
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3. Results

3. 1  Lubricant adhesion
The values obtained for the lubricant adhesion are

given in Table 3.  The best adherence was obtained
with a lubricant that had been diluted five times in
water, a spray mist density, ρs, of 0.1 cc • s-1

• cm-2,
and a die temperature, T, of 250 to 300 oC.  For a
given spray mist density, the die temperature range
in which the amount of lubricant adhering increases,
so that the spray pressure on the die becomes high,
and the die temperature at which the greatest amount
of lubricant adheres is also higher.  When using
lubricant that had been diluted 15 times in water, the
lubricant failed to adhere under the majority of spray
conditions.  Therefore, we concluded that the
dilution of lubricant in water, the spray mist density,
die temperature, and spray pressure on the die all
influence the lubricant adhesion greatly.

3. 2  Heat transfer coefficient
The effects of spray mist density and die

temperature on the heat transfer coefficient in spray
cooling are shown in Fig. 5.  The heat transfer
coefficient increases together with the spray mist

density, and under all the spray mist density
conditions, the maximum heat transfer coefficient
was found to exist in the examined die temperature
range.  Moreover, for a spray mist density, ρs, less
than or equal to 0.3 cc • s-1

• cm-2, the heat transfer
coefficient changed considerably with the die
temperature.  In the case of a spray mist density, ρs,
of 0.1 cc • s-1

• cm-2, no cooling is produced for die
temperatures of 300 oC or more.  The effect of the
spray pressure on the die, and that of the die
temperature on the heat transfer coefficient are
shown in Fig. 6.  For a given spray mist density, ρs,
of 0.3 cc • s-1

• cm-2, the heat transfer coefficient
becomes large as the spray pressure on the die
becomes high, at die temperatures of 300 oC or less.
Therefore, we were able to conclude that the spray
mist density, die temperature, and spray pressure on
the die all greatly influence the heat transfer
coefficient.
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Table 3    Lubricant adhesion results obtained from lubricant spray model test.
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Table 2 Lubricant spray conditions in hot ironing test.
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3. 3  Coefficient of friction
The effects of the lubricant on the coefficient of

friction in the hot ironing test are shown in Fig. 7.
For lubricant condition A (described in Table 2), the
coefficient of friction is constant at about 0.2
throughout the ironing test.  For lubricant condition
B, the coefficient of friction increases from about
0.12 to about 0.2 as the ironing test distance
increases.  In the case of lubricant condition C, the
coefficient of friction increases slightly from about
0.07 to about 0.1 as the ironing distance increases.
From these three sets of results, we determined that
the variation in the coefficients of friction was
influenced by the adhesive strength of the lubricant.
Therefore, we can say that the lubricant adhesion
and the type of the lubricant greatly influence the
coefficient of friction.

3. 4  Ironing die surface temperature
An example of the die thermometry results

obtained from the hot ironing test, as well as the
estimated die surface temperature results, are shown
in Fig. 8.  The die surface temperature begins to rise
about 0.05 s after the start of the ironing test.  This
time is equal to that needed for the billet to reach the
temperature measurement part.  In Fig. 8, ∆T is the
increase in the die surface temperature.  The effect
of the coefficient of friction on the increase in the
die surface temperature ∆T is shown in Fig. 9.  If the
coefficient of friction changes from 0.1 to 0.3, ∆T
will be about 30 oC.  The effect of the sliding
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velocity on ∆T under lubricant condition C is shown in
Fig. 10. If the sliding velocity changes from 100 to
200 mm • s-1, ∆T will be about 30 oC.  The effects of
contact time on ∆T under lubricant condition C are
shown in Fig. 11.  If the contact time changes from
0.15 to 0.3 s, ∆T is about 120 oC.  Therefore, we
determined that the contact time has the greatest
influence on the increase in the die surface
temperature.

4. Conclusions

We used a lubricant spray model test to analyze
lubricant adhesion and the heat transfer coefficient.
Moreover, we devised a new hot ironing test and we
measured the ironing load, the ironing lateral load,
and the inner temperature of the ironing die, in order
to research the influence of the coefficient of friction

on the lubricant conditions, as well as the
relationship between the friction factors and the die
temperature.  As a result, we reached the following
conclusions.

(1) The dilution of lubricant in water, the spray
mist density, the die temperature, and the spray
pressure on the die all have a great effect on the
lubricant adhesion.

(2) The spray mist density, the die temperature,
and the spray pressure on the die all greatly
influence the heat transfer coefficient.

(3) The lubricant adhesion and the type of the
lubricant both greatly influence the coefficient of
friction.

(4) The contact time has the greatest influence on
the increase in the die surface temperature.

In our subsequent studies, we will calculate the
heat transfer analysis temperature of the die using
the measured heat transfer coefficient.  Moreover,
we will investigate the effects of the friction factor
on die softening and wear in a hot ironing test.
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