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In this paper, a new vehicle control algorithm
for avoiding an obstacle within the shortest
possible travel distance is proposed.  The
algorithm consists of two steps.  In the first step,
the optimal vehicle trajectory and the
corresponding force and moment of the vehicle

are determined using second-order cone
programming.  In the second step, the computed
force and moment are distributed into each tire
force, while using sequential quadratic
programming with a pseudo-inverse matrix for
the derivation.
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1.  Introduction

Over the last several decades, there has been an
ongoing and rapid development in the field of
vehicle dynamics controls.  This began with anti-
lock brake systems (ABS), traction control systems
(TCS), and then continued with the development of
electronic stability control (ESC) that helps prevent
side slip of a vehicle.  These systems have
dramatically enhanced the stability of vehicles.2)

Recently, attention has focused on vehicle dynamics
integrated management (VDIM).  VDIM
incorporates a range of functions for vehicle
dynamics control and actually performs them by
using actuators.  The authors have proposed a
hierarchical control algorithm (H-VDIM) that is
effective for realizing VDIM by using the steering
and braking systems3) to control each tire force.
VDIM enables excellent controllability and stability
based on seamless control in a range of situations
from ordinary to critical.

In a previously developed version of VDIM, the
target vehicle dynamics presented as the motion that
the driver desired were calculated from the driver's
operation of the steering, and brake/accelerator
pedals.  With the evolution of technology, however,
it has become possible to obtain preview information
such as the driving environment by using a camera,
radar and/or other sensors, or by using an
information service provided by the infrastructure.
As a result of these changes, the next generation of
VDIM is expected to bring enhancements to safety,
ride comfort and energy efficiency, through a
predictive control that utilizes this preview
information.

This report discusses an obstacle avoidance
problem as a first step toward realizing the next-
generation VDIM.  A new control algorithm for
avoiding an obstacle within the shortest possible
distance is proposed.  In this approach, the control
algorithm is constructed within the framework of H-
VDIM, in which the problem is classified into the
following two steps.  In the first step, the optimal
trajectory and corresponding force and moment of
the vehicle are determined based on second-order
cone programming.  The details of this method are
described in Sec. 4.  In the second step, the

computed force and moment are optimally
distributed to each tire.  An effective algorithm was
described in our previous papers.4, 5) The proposed
method is confirmed by simulation.

2.  Collision avoidance problem

When an active safety system finds an obstacle in
the path of the vehicle, the system either alerts the
driver or takes action to avoid the obstacle.  In these
systems, one of the most important issues involves
determining the timing at which the system should
become active.  Of course, there are other factors
that affect the timing, such as the driver's
sensibilities, safety margins, and so on.  Although,
we can apply an absolute index to indicate whether it
is physically possible to determine whether it is
possible to avoid the obstacle.  In this paper,
therefore, we consider an avoidance problem that
requires us to determine the distance to an obstacle
such that, if that distance were any shorter, the
vehicle would not be able to avoid the collision.
This distance is called the minimum avoidable
distance.

The obstacle avoidance problem is depicted in Fig. 1.
The vehicle has an initial speed ν0 , while Ye denotes
the lateral distance that the vehicle has to move to
avoid the detected obstacle.  This lateral distance is,
of course, equal to the lateral size of the obstacle.
Note that there are two types of maneuver for
avoiding a collision.  One is a stopping maneuver,
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where the brakes are applied to make the vehicle just
stop before it reaches the obstacle (Fig. 1(a)).  The
second is a passing maneuver, where the driver
steers the vehicle so that it passes by the obstacle
such that the lateral speed νye , yaw angle θe , and
yaw angle velocity θe are all zero, as shown in Fig. 1(b).
Also, Xes and Xep indicate the distances covered by
the vehicle during the stopping and passing
maneuvers.  Then, the minimal avoidable distance
Xe equals min{Xes , Xep}.

3.  Hierarchical vehicle dynamics integrated
management algorithm: H-VDIM

The functions that people demand from a VDIM
are becoming more and more.  As the result, the
actuators built into the vehicle are also increasing.
Accordingly, the issue of compatibility between
algorithms and system configurations is becoming
substantial.

A hierarchical vehicle dynamics integrated
management (H-VDIM) algorithm has been
proposed to satisfy the above requirements (Fig. 2).
The H-VDIM algorithm consists of the following
layers, each connected hierarchically.  

[Vehicle Dynamics Control]
This layer calculates the desired longitudinal and

lateral forces and yaw moment of the vehicle.  The
forces and moment are determined so as to achieve
the desired vehicle motion while maintaining
stability.  The desired motion is estimated by the
driver's pedal inputs and the steering wheel angle.

[Force & Moment Distribution]
This layer determines the distribution of each tire

force, so that the total of the tire forces produces the

desired force and moment for the vehicle.
[Wheel Control]
This layer calculates the target values for each

actuator, such as those for the engine, braking,
steering and others.  The target values are
determined so as to generate the desired tire forces.

[Actuator Control]
Each actuator system has a corresponding control

unit.  The braking system, for example, has actuated
pressure valves to control the braking torque.

The upper layer outputs the target values to the
lower layer, while the lower layer feeds back the
results of applying the calculated values.  The upper
layer then recalculates the target values depending
on the feedback.  This two-way communication
enables each layer to cooperate with the other and
maintains higher robustness against the
characteristic change of the controlled system and
the variable environment.  Adding preview
information, H-VDIM is enhanced as in Fig. 3.  We
can extend the role of the vehicle dynamics control
layer so that it includes trajectory control based on
predictive control.  The actuators used for vehicle
control are strongly coupled through body dynamics
that include nonlinear tire characteristics.  Thus, the
predictive control of the trajectories is generally very
complex and difficult.  The proposed H-VDIM
approach helps to separate the control into simpler
tasks and makes on-line control easier.

4.  Trajectory control

4. 1  Formulation of problem
The collision avoidance problem described in
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Chapter 2 is first solved as the trajectory control for
a rigid body within the framework of H-VDIM (Fig. 4).
Where, Fx(t), Fy(t), F(t) are the longitudinal and
lateral forces and the resultant force of the rigid
body, and Mz(t) is the moment around the Z-axis.
These are constrained by a relationship that consists
of the friction circles of each tire.  Further, m and Iz

are the mass and inertia around the Z-axis of the
rigid body.

In the stopping maneuver, the minimum avoidable
distance is achieved when Fx is minimized, where
that minimized Fx produces the maximum
deceleration without lateral and rotational motion.
In such a situation, the distance Xes that the vehicle
must travel until it stops can be solved relatively
easily.  The calculation is described later.  For the
passing maneuver, however, the optimum control
and the avoidable distance Xep are described as the
problem for minimizing the performance function J
under the following dynamic equations.  Further, the
problem incorporates the equality constraints
expressed by Eqs. (5)-(7), as well as the inequality
constraints for the control inputs (Eq. (8)).  Note
that, the terminal time of the avoidance is unknown.

[Dynamics equations]

• • • • • • • • • • • • • • • • • • • • • • (1)

x(t) = [νx(t), νy(t), r(t)]T
• • • • • • • • • • • • • • • • • • • • • • • • (2)

u(t) = [Fx(t), Fy(t), Mz(t)]
T

• • • • • • • • • • • • • • • • • • • • • (3)

[Performance function]

• • • • • • • • • • • • • • • • • • • • • • • (4)

[Constraints] 
x(0) = [ν0, 0, 0]T

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (5)

J x t dt v t dt
T T
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[x2(Τe), x3(Τe)] = [0, 0]• • • • • • • • • • • • • • • • • • • • • • • • • (6)

• • • • • • • • • • • • • • • • • • • (7)

C(u(t))< 0• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (8)
Several sequential approximate solutions have

been proposed to solve the above problem as a two-
point boundary value problem, but these involve a
large amount of calculation.  Accordingly, we solve
this problem by using a two-step optimization
approach.  First, the terminal time Τe is assumed to
already be known as Τ 'e, such that the problem can
be converted to a discrete time, and that the
optimum solutions X'e, u'opt can be solved.  The
second step is to find the terminal time Τe

minimizing X'e .  The former problem can be
formulated as a multi-dimensional optimization
problem using convex programming and the latter
becomes a simple nonlinear optimization with only
one unknown variable Τe .  With this separation of
solving process, we can obtain the solution with
comparative ease.

4. 2  Constraint of force and moment
It is well-known that the longitudinal and lateral

forces generated between the tires and the road
surface are constrained within a circle called the
"friction circle."  Here, we consider the range of
Fx(t), Fy(t), Mz(t) as the resultant force of each tire.
Using the force and moment distribution algorithm
shown in Chapter 5, the range of Fx(t), Fy(t), Mz(t)
can be determined.  The calculated result is shown in
Fig. 5.

From the figure, we can see that the range of force
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and moment is a convex set and it is approximately
represented as 

C(u(t)) = Fy
2(t) + Fy

2(t) + Wr
2(t)Mz

2(t) - F 2(t)<0
• • • • • • • • • • • • • • • • • • • • • • • • (9)

where Wr is a constant, and F(t) the maximum force
of the vehicle at time t.  In this paper, we assume
that F(t) is a constant during the control interval, i.e.

F(t) = F for all t • • • • • • • • • • • • • • • • • • • • • • • • (10)
4. 3  Second-order cone programming problem
If a set satisfies for and

, then it is called a cone.  A second-order
cone in the N-dimensional space RN is defined as
follows.

• • • • • • • • • • • • • • • • • • (11)

For a tuple of p vectors 
, the set defined by

• • • • • • • • • • • • • • • • • • (12)

is also called a second-order cone.
A second-order cone program is an optimizing

problem involving the minimizing of the linear
performance function under the affine and second-
order cone constraints over optimizing variables.
The second-order cone programming problem is a
special case of a semi-definite programming
problem.  Consequently, a primal-dual interior-point
method, which is a powerful numerical algorithm for
a semi-definite programming problem, can be
applied.6, 7)

Now, we will reformulate the problem given by
Eqs. (1)-(8) as a second-order cone programming
problem.  For this, let us assume that terminal time
Τ 'e is already known and let us discretize the
problem by sampling period ∆t.  The sampling
period should be small enough so that we can
assume that the control inputs u(t) are constant
during each sampling period.  By taking an
appropriate integer L, the control interval Τ 'e can be
expressed as 
Τ 'e = L∆t. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (13)

Next, let us define discrete values {Fx(k), Fy(k),
Mz(k), F(k), vx (k), vy (k), x (k), y (k), r (k), θ (k),
(k = 0, • • • , L)}, where Fx(k), Fy(k) are the longitudinal
and lateral forces, Mz(k) the rotational moment, F(k)

B B
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⎪
⎪

⎫

⎬
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⎭
⎪
⎪
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2

2

∀ >λ 0

∀ ∈x Kλx∈KK ⊆ Rn

the maximum force, vx(k), vy(k), the X and Y
directional speeds, x(k), y(k) the positions in the X
and Y directions, and r(k), θ(k) the yaw angle
velocity and the yaw angle, each at the k-th sampling
interval.

The optimizing variables X are defined by the
following equations.

X(k) = [F(k), Fx(k), Fy(k), Wr Mz(k)] • • • • • • • • • • (14)
X = [X(0), • • • , X(k), • • • , X(L - 1)]T

• • • • • • • • • • • (15)
As shown in Eq. (9), X is an element of the

second-order cone ( ).  Further, the
performance function J' is described by equation

J' = x(L). • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (16)
The relationships between x(k), vx(k) and Fx(k) are
expressed by the equations 

x(k) = x(k - 1) + ∆t vx(k - 1)
( k = 1, 2, • • • , L) • • • • • • • • • • • • • (17)

• • • • • • • (18)

Similarly, vy, y, r, θ satisfy some linear relations of
X.  In addition, at the terminal sampling time L, X
should fulfill the following affine constraints.

vx(0) = v0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (19)
vy(0) = 0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (20)
x(0) = 0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (21)
y(0) = 0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (22)
r(0) = 0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (23)
θ (0) = 0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (24)
vy(L) = 0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (25)
y(L) = Ye • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (26)
r(L) = 0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (27)
θ (L) = 0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (28)
uF (k) = F (k = 0, 1, • • • , L - 1)• • • • • • • • • • • • • • • (29)
Hence, the collision avoidance problem has been

formulated as an optimizing problem that has the
linear performance function and constraints for
variables in the second-order cone space.  It
can be solved efficiently by applying the second-
order cone programming method.

4. 4  Search for terminal time
First, we consider the stopping maneuver.  If the

maximum decelerating force for ideal straight
braking is F, the distance Xes needed for the vehicle
to stop assuming an initial speed v0 and the
corresponding maneuvering time Tes are described
by the equations.

X ∈B
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (30)

• • • • • • • • • • • • • • • • • • • (31)

Next, we consider the passing maneuver. Tep is the
time needed for the passing maneuver to avoid the
obstacle.  In searching for Tep that gives the
minimum avoidable distance, we should note that
we can restrict the range of the search to

Tep < Tes. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (32)
This is because, in the stopping maneuver, full
braking in the longitudinal direction always gives
the slowest velocity in the X-direction and therefore,
if Tep > Tes , then the stopping maneuver obviously
gives a shorter avoidable distance.

On the other hand, Tep should be greater than or
equal to the minimum time Tmin needed for the
vehicle to move only in the lateral direction to the
position y = Ye and stop there.  Tmin is attained if the
vehicle is maximally accelerated up to y = Ye /2 and
maximally decelerated until y = Ye .  With the
elementary calculation, Tmin is given by

. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (33)

Thus, if the shortest avoidance is achieved by the
passing maneuver, Tep should lie within the range 

. • • • • • • • • • • • • • • • • • • • • • • • • • • • (34)

Accordingly, in the search for the terminal time, the
existing area of the solution is limited, and the
optimal solution can be found with comparative ease
by using a general line-search method.

5.  Simulation

The results of collision avoidance using the above
algorithm were confirmed by
simulation.  For the simulation, the
vehicle was assumed to be a rigid
body.  In this problem, however, the
initial and terminal conditions of the
yaw angle and yaw angle velocity are
all 0.  Therefore, the shortest
avoidance is achieved, obviously,
when all of the tire forces are used for
translational motion without yaw
motion as .  Consequently, it is
sufficient to assume the vehicle to be

Mz≡ 0

2 0m
F

Y T mv
Fe ep≤ ≤

T m
F

Ymin e= 2

X v T F
m

T m
F

ves es es= − =0
2

0
21

2
1
2

T v mv
Fes F

m

= ( ) =
0 0 a mass point.  Then, the following results of the

trajectory control are solved for the mass point.  The
minimum avoidable distance for the initial speed is
shown in Fig. 6, where Ye = 3 [m].  At an initial
speed in excess of 18.6 [m/s], the passing maneuver
produces the minimum avoidable distance.  Then,
the minimum avoidable distance approaches the
result for pure side movement asymptotically.

The target trajectory calculated by the trajectory
control and the result achieved by the force and
moment distribution are shown in Fig. 7, for an
initial speed of 20 [m/s].  The arrows indicate the
resultant force for each tire force produced by the
distribution control.  The distribution control
considers the movement of the weight and the
nonlinear characteristics of each tire for the weight.
Therefore, the target force and moment are not
achieved completely.  Accordingly, there is some
tracking error between the target and the result
trajectory.  When the data for a general passenger
car is used, the standard deviation of the force error
is 4.3 [%], the results of the terminal conditions are
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Ye = 2.88 [m] and vy(L) = 0.049 [m/s].  All are less
than 5 [%].  The difference in the avoidable distance
is 0.2 [m] which is almost 1 [%].

6.  Conclusion

As a first step toward developing a next-generation
VDIM with preview information, a new control
algorithm for an obstacle avoidance problem was
proposed.  Based on the framework of H-VDIM, the
problem is separated into two subsystems that can be
solved comparatively easily.  The vehicle trajectory
errors between theoretical optimum solutions and
control results by using the proposed algorithm are
acceptably small.
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