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The reactive-templated grain growth (RTGG)
method is a powerful fabrication technique for
producing textured ceramics having enhanced
performance compared to those of conventionally
prepared non-textured ceramics, for various
functional materials.  Its wide applicability is
demonstrated by the fact that the RTGG method
using β-Co(OH)2 templates gave textured
ceramics of p-type thermoelectric layered
cobaltites having various compositions.  The
orientation degree of a prepared ceramic, which
influences its performance, depends on the
composition of the ceramic.  Thus, in order to
determine general guidelines for the production
of a highly textured ceramic, we analyzed the

formation mechanism of the model system
[Ca2CoO3]0.62[CoO2] (CCO: Ca2CoO3 layer +
CoO2 layer) ceramic on β-Co(OH)2 templates by
using high-temperature X-ray diffraction (XRD),
pole figure, scanning electron microscopy (SEM)
and transmission electron microscopy (TEM).
We demonstrated that a textured CCO ceramic is
formed through a series of in-situ topotactic
conversions via intermediate phases with a
preserved CoO2 layer of β-Co(OH)2 templates.  In
general, we showed, for the first time, that
'a reaction design with partially preserved
crystallographic similarities' is essential for the
fabrication scheme of a highly textured ceramic
with enhanced performance.
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1.  Introduction

1. 1  Fabrication techniques of a textured 
ceramic

The oriented consolidation of anisotropic particles
(OCAP) method,1-3) the templated grain growth
(TGG) method4-7) and the reactive-templated grain
growth (RTGG) method8, 9) have been developed for
fabricating textured ceramics.  These methods give
various functional ceramics with enhanced
mechanical (e.g. fracture toughness and bending
strength) and physical (e.g. thermoelectric,
piezoelectric, ferroelectric and magnetic) properties
compared with conventionally prepared non-
textured ceramics.  To further enhance these
properties, the effect of various process parameters
of these methods on the orientation degree of
prepared ceramics was investigated by
experimental10, 11) and computational approaches.12, 13)

The OCAP and TGG methods use single
crystalline particles with anisotropic shape (plate-
like or needle-like) and include a process stage in
which the particles are aligned parallel to one
another.  These methods require, however, single
crystalline particles having target compositions,
which limits the material systems for which they can
be used.  The RTGG method overcomes this
disadvantage; this method gave textured ceramics
for a variety of compositions.8, 9, 14-25) We extended
the fabrication strategy used in the topotactic
synthesis of a textured Mn-Zn ferrite ceramic.26) In
the RTGG method, an anisotropic shaped template
particle, which has a different composition but a
similar crystal structure to the target ceramic
material is  used.  The template particles are mixed

with complementary reactants and aligned parallel to
each other.  The templates react with the reactants on
heat treatment eventually to give textured ceramics.  

1. 2  Significance of the formation mechanism 
of a textured ceramic

Table 1 gives typical examples of RTGG-
processed ceramics.  First, the textured ceramic of
Bi0.5(Na, K)0.5TiO3 (simple perovskite structure)
formed on Bi4Ti3O12 (layered perovskite) templates
was reported.8, 27) Then, recent reports on the
fabrication of textured ceramics of
[Ca2CoO3]0.62[CoO2]23) (abbreviated to CCO:
Ca2CoO3 (rock salt-type) layer + CoO2 layer) and
[Bi2Sr2-xO4]p[CoO2]24) on β-Co(OH)2 templates
demonstrated the wide applicability of the RTGG
method, i.e., even if a reactive template has only a
partial similarity with the crystal structure of the
target substance (only the CoO2 layer is common),
the RTGG method gives a textured ceramic.

However, it was reported that the orientation
degree of the prepared ceramics depends on their
compositions (see Table 1).  CCO and [Bi2Sr2-xO4]p

[CoO2] ceramics have Lotgering's orientation
degrees28) (FLG) of 123) and 0.67,24) respectively,
although both ceramics are formed on β-Co(OH)2

templates.  In the case of a perovskite-type material,
the FLG value of a (Pb1/2Bi1/2)(Ni1/4Ti3/4)O3 ceramic
was relatively low, FLG = 0.2.29) In this case, it was
considered29) that the texture development was
disturbed by a metastable intermediate phase, which
does not share common crystallographic features
with the target material.  On the other hand, it is
known that the orientation degree of prepared
ceramics often drastically affects their
performance,11) thus making it important to
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Template
(crystal structure) FLG

1) Features of 
texture development

-Co(OH)2
(CdI2-tpye)

 -Co(OH)2
(CdI2-tpye)

Target substance
(crystal structure)

Newly clarified mechanism 
of texture development
[Ref. 30] <This report>

[Bi2Sr2-xO4]p[CoO2]
(misfit-layered)

[Ca2CoO3]0.62[CoO2]
(misfit-layered)

Intermediate phase disturbs
texture development [Ref. 29]

1 [Ref. 23]

0.67 [Ref. 24]

Bi4Ti3O12
(layered perovskite)

Bi0.5(Na,K)0.5TiO3
(simple perovskite)

_

Direct conversion from layered 
perovskite into simple perovskite

Bi4Ti3O12
(layered perovskite)

0.9 [Refs. 8, 27]

0.2 2) [Ref. 29]

1) Lotgering’s orientation degree
2) FLG value was 0.5 for the ceramic prepared under the condition that the formation   

of an intermediate phase was inhibited by a rapid heating technique [Ref. 29]. 

(Pb1/2Bi1/2)(Ni1/4Ti3/4)O
(simple perovskite)

Table 1 Examples of RTTG-processed ceramics.



investigate the texture preservation mechanism for
each material system.

Recently, we elucidated, for the first time, the
general principle for the RTGG procedure that a
highly textured ceramic is prepared when the
crystallographic similarities from the template
material all the way through to the target material
are 'at least partially maintained' during the
formation of the ceramic.30) Here, we report
evidence of this principle based on the formation
mechanism of a textured CCO ceramic on β-Co(OH)2

templates: i.e., in-situ topotactic conversion of (001)
β-Co(OH)2 {111} Co3O4 (001) CaxCoO2

(001) CCO.

2.  Experimental

2. 1  Fabrication procedure of a
[Ca2CoO3]0.62[CoO2] ceramic

Figure 1 shows a schematic representation of the
RTGG process for the fabrication of a textured CCO
ceramic using β-Co(OH)2 platelets31) (average
diameter ~ 0.5 μm; thickness ~ 0.1 μm; (001) plane
developed32)) as reactive templates.  The detail of the

fabrication procedure and conditions are described
elsewhere.23, 30) The templates were mixed with
CaCO3 (complementary reactant), polyvinyl butyral
(binder) and di-n-butyl phthalate (plasticizer) in an
ethanol-toluene solution.  The mixed slurry was
tape-cast by a doctor-blade technique, and the
obtained sheet was dried in air, cut, and stacked to
form a monolithic plate (green compact).  The
organic compounds in the green compact were burnt
out at 673 K in air (dewaxed compact).  Finally, the
compact was sintered at 1193 K in O2 with uniaxial
pressure.

2. 2  Analysis of the formation mechanism of a
textured [Ca2CoO3]0.62[CoO2] ceramic

We determined the transition of crystalline phases
for the compounds in an RTGG-processed specimen
during heat treatment by using high-temperature
X-ray diffraction (XRD).  The XRD measurement
was carried out on a surface parallel to the casting
plane of the dewaxed compact after heating in air
flow at temperatures of 673, 913, 973, 1103 and
1163 K.

We conducted pole figure (PF) measurements for a
green compact, a dewaxed compact, a heat-treated
specimen (heated at 973 K in O2 flow for 10 min)
and a sintered ceramic specimen (sintered at 1193 K
in O2 flow for 8 h) in order to determine the
preferred orientations of the Co-containing
substances produced during processing.  We also
evaluated the preferred orientation function values33)

for the normal direction to the focused planes of the
substances (e.g., (001) plane of β-Co(OH)2).

We observed the microstructure of the heat-treated
specimens using a transmission electron microscope
(TEM) equipped with EDS in order to confirm that
CCO is formed with preserved crystallographic
orientations via an intermediate phase formation.  In
order to observe the microstructural changes that
occurred during the formation reaction, the
specimens were heat-treated at 1043 K or 1073 K in
an O2 atmosphere with uniaxial pressing at 9.8 MPa
for 15 min.  For comparison, we acquired TEM and
scanning electron microscopy (SEM) images for the
sintered ceramic specimen (sintered at 1193 K in an
O2 atmosphere with uniaxial pressing at 19.6 MPa
for 20 h), in which the formation of CCO had
proceeded to completion.
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Fig. 1 Schematic representations of the RTGG
(reactive-templated grain growth) process
using β-Co(OH)2 templates for the fabrication
of a textured [Ca2CoO3]0.62[CoO2] (CCO)
ceramic23, 25) and analytical methods used for
the elcidation of the formation mechanism of a
textured CCO ceramic.



3.  Experimental results and discussion

Figure 2 shows the high-temperature XRD results
obtained for the dewaxed specimen, which was
found to be a mixture of Co3O4 (a decomposed
product of β-Co(OH)2 templates) and CaCO3 (Fig. 2
(a)).  At 913-973 K, some of the CaO (a product of
CaCO3 decomposition) is considered to react with
Co3O4 to form an intermediate phase (Figs. 2 (b),
(c)).  The intermediate phase was confirmed34) to be
Ca0.5[CoO]2

35) (hereafter called CaxCoO2) composed
of  a l t e rna t ing  Ca-ca t ion  and  CoO 2 layers
(β-NaxCoO2-type CaxCoO2).  CaxCoO2 is expected to
react with the residual CaO at 1103 - 1163 K to form
CCO (Figs. 2 (d)-(e)).  It is noted that the prepared
CCO ceramic had a (00 ) orientation as shown in
Fig. 2 (e).

Figure 3 (PF) indicates that the (001), (111), (001)
and (002) planes of β-Co(OH)2 in a green compact,
Co3O4 in a dewaxed specimen, CaxCoO2 in a heat-
treated specimen and CCO in a sintered specimen,
respectively, were aligned parallel to the casting
plane: i.e., these preferred orientations are in the
relationship of (001) β-Co(OH)2 // {111} Co3O4 //

(001) CaxCoO2 // (001) CCO according to the
contours concentrated at the pole and the FND values
indicating substantial orientation (FND = 0.0 for
completely random and FND = 1.0 for perfectly
oriented).  It should be noted that the four Co-containing
substances have a common (or similar) CoO2 layer
in their crystal structure in the direction parallel to
the planes listed above.  The conversion of the (001)
plane of the β-Co(OH)2 templates into the {111}
plane of the Co3O4 particles was also indicated by
SEM observation of the dewaxed compact: i.e., it
was found30) that the Co3O4 particles in the compact
maintained the morphology of the templates
(hexagonal plate-like shape), and that their
developed plane was along the casting plane.  The
relationship for the crystallographic planes of the
other substances was confirmed by the obtained
TEM images as described below.

Figure 4 (a) indicates that the developed plane of
the CCO grains is along the casting plane for the
sintered ceramic specimen in which the formation of
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Fig. 3 Results of pole figure measurements30) for (a)
(001) plane of β-Co(OH)2 templates in a green
compact, (b) (111) plane of Co3O4 in a dewaxed
compact, (c) (001) plane of CaxCoO2 in a heat-
treated compact (973 K, O2 flow, 10 min) and 
(d) (002) plane of CCO ([Ca2CoO3]0.62[CoO2]) in
a sintered ceramic (1193 K, O2 flow, 8 h).
Azimuthal (0O < β < 360O) scans were carried out
in a reflection geometry around the normal
direction of the above plane at various polar
angles (0O < α < 75O).  FND represents the value
of the preferred orientation function evaluated in
the normal direction33) of the measured plane.
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Fig. 2 Results of high-temperature XRD30) for a surface
parallel to the casting plane of a dewaxed
compact during heating in air flow: measured at
(a) 673 K, (b) 913 K, (c) 973 K, (d) 1103 K and
(e) 1163 K: CCO represents
[Ca2CoO3]0.62[CoO2].



CCO had been completed.  The selected area
electron diffraction (SAED) pattern agrees that for
CCO crystal structure (inset of Fig. 4 (b)).  In the
high-resolution TEM (HRTEM) image (Fig. 4 (b)),
the dark linear contrasts are derived from the CoO2

layer of CCO while the three arrays of dark spots are
due to the triplicate rock salt-type structure of CCO,
according to the simulated HRTEM image of CCO
(Fig. 4 (c)36))

Figure 5 represents the cross-sectional HRTEM
image of the specimen heat-treated at 1043 K (O2,
uniaxial pressing of 9.8 MPa, 15 min).  SAED
patterns and fast Fourier transform (FFT) images
suggest structural transition from Co3O4 (region
marked 1) to CaxCoO2 (region marked 2).  The FFT
image of region 1 (Ca/Co atomic ratio was less than
0.06 by EDS analysis) exhibits a characteristic
hexagonal network of reflection intensities for the
{111} plane of Co3O4 while the FFT image of region
2 (Ca/Co atomic ratio was ~0.4) indicates a layer-
structured CaxCoO2.  SAED (designated as 3-2)
taken from the middle part of the HRTEM image
clearly identifies the crystallographic orientation
relationship of {111} Co3O4 // (001) CaxCoO2,
which agrees with the PF shown in Figs. 3 (b), (c).

Figure 6 shows the cross-sectional HRTEM image
of the specimen heat-treated at a higher temperature

(1073 K) than that for previous specimen in Fig. 5
(heated at 1043 K).  In the magnified figure in Fig. 6 (a),
three successive dark lines (corresponding to the
CoO2 layer, see Fig. 4 (c)) spaced ~ 0.54 nm apart
are gradually transformed into two dark lines aligned
at ~ 1.08 nm intervals, with bright and dark contrasts
between them.  The image on the left hand side is
thought to correspond to CaxCoO2 due to the
intervals of the adjacent dark linear contrasts (the
CoO2 layer).  On the other hand, the image on the
right hand side presumably corresponds to a CCO-like
structure on the basis of the following results: the
spacing of the linear contrasts (the CoO2 layer) is
sufficiently close to those of CCO and the spots due
to the rock salt-type layer between the linear contrasts
are similar to those of CCO shown in Fig. 4 (b)
although they are less evident when compared with
those of CCO.  The CCO-like structure is considered
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Fig. 4 (a) SEM photograph for a fracture surface perpendicular
to the casting plane of a sintered ceramic (1193 K, O2,
uniaxial pressing of 19.6 MPa, 20 h).30) (b) Cross-section
HRTEM image and SAED pattern of the sintered
ceramic30): the image and diffraction pattern were taken
with the incident beam parallel to [110] direction in the
unit cell for a Ca2CoO3 block of CCO
([Ca2CoO3]0.62[CoO2]).  (c) The simulated HRTEM image
of CCO36) containing alternating CoO2 and rock salt-type
layers.
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Fig. 5 Fast Fourier transform images (FFTs,
No. 1-1, 2-1, and 3-1) of the
corresponding cross-sectional HRTEM
image30) (No. 1, 2, and 3) of the heat-
treated specimen (1043 K, O2, uniaxial
pressing of 9.8 MPa for 15 min) showed
the structural transition from Co3O4
(region 1) to CaxCoO2 (region 2).
Selected area electron diffraction 
(No. 3-2) was taken from the middle
part, wider region than for FFT filtering,
and exhibited the crystallographic
orientation relation between Co3O4 and
CaxCoO2.  Insets show the model
structures of Co3O4 and CaxCoO2.
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to be a transient and deficient state during the
reaction of CaO (the decomposed product of CaCO3)
and CaxCoO2.  The previous report37) supports the
appearance of such Ca-deficient CCO before the
completion of CCO formation.  Thus, a possible
interpretation (Fig. 6 (b)) of the observed HRTEM

image is that CaxCoO2 provides a part of CoO2

layers to form the CoO2 layer of CCO, while the
other CoO2 layers react with Ca and O to form the
rock salt-type layer of CCO.

Figure 7 schematizes the crystal structures of
CdI2-type β-Co(OH)2, spinel-type Co3O4 and
β-NaxCoO2-type CaxCoO2 and misfit-layer-
structured CCO.  They have common (or similar)
CoO2 layers along the (001) plane in the case of
β-Co(OH)2, CaxCoO2 and CCO, and along the {111}
plane in the case of Co3O4.  According to the results
described above, it is considered that a series of in-
situ topotactic conversions of (001) β-Co(OH)2

{111} Co3O4 (001) CaxCoO2 (001) CCO is
essential for the formation of a textured CCO
ceramic on β-Co(OH)2 templates with maintained
orientations, where the β-Co(OH)2 template
provides the CoO2 layer.

4.  Conclusion

We showed evidence indicating that a textured
CCO ceramic is formed in the RTGG process by the
in-situ topotactic conversion of (001) β-Co(OH)2

{111} Co3O4 (001)CaxCoO2 (001) CCO,
where β-Co(OH)2 templates provide the CoO2 layer
of CCO via Co3O4 and CaxCoO2.  In general, the
evidence suggests a guiding principle that
crystallographic similarities must be 'at least
partially maintained' for all materials produced
during the processes for the production of a highly
textured ceramic.

The RTGG process also provided a textured
ceramic of n-type thermoelectric layered oxide
(ZnO)mIn2O3(ZmIO) by using ZnSO4 • 3Zn(OH)2

platelets as a reactive template.38-40) In addition,
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Fig. 7 Schematic representations for the crystal structures of (a) CdI2-type β-Co(OH)2, (b) spinel-type Co3O4, 
(c) β-NaxCoO2-type CaxCoO2 and (d) misfit-layer-structured [Ca2CoO3]0.62[CoO2] (CCO).  They are in topotaxial
relationship with one another.
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Fig. 6 (a) Cross-section HRTEM image30) of the heat-
treated specimen (1073 K, O2, uniaxial pressing
of 9.8 MPa, 15 min).  The image was taken with
the incident beam parallel to [110] direction in
the unit cell for a Ca2CoO3 block of CCO
([Ca2CoO3]0.62[CoO2]).  (b) The schematic
representation of the possible interpretation for
the observed contrasts shown in the magnified
view for a part of the TEM image.



R. Asahi et al. demonstrated that the thermoelectric
module using RTGG-prepared textured ceramics of
p-type CCO and n-type ZmIO stably generated
electric power in a high temperature air
atmosphere.41, 42) We expect that the RTGG process
combined with an adequate fabrication scheme of
textured ceramics be further applied to the
production of not only thermoelectric ceramics but
also the other functional ceramics having enhanced
performance.
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