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The present paper describes a model representation of multi-cyclic phenomena for a

multi-cylinder engine system. The model is simplified for implementation as a practical engine controller.

The simplified model with physically meaningful variables can be used in design considering practical

objectives and constraints more effectively. The proposed approach consists of two steps. First, an

approximate analytical discrete crank angle model (i.e., a periodically time-varying state space model) is

derived from the conservation laws. Second, the concept of role state variables is proposed to transform the

periodically time-varying state space model into a time-invariant state space model. The stabilizability and

optimality of the time-invariant state space model imply those of the periodically time-varying state space

model. The time-invariant state space model is used to design cold start feedforward and feedback controllers.
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1. Introduction

As the regulation of automotive performance

becomes increasingly strict, the development of a high-

efficiency and zero-emissions powertrain has become

crucial. However, it is feared that conventional

development techniques will exponentially increase

the man-hours required for engine control design. In

order to solve this problem, the powertrain should be

controlled electronically with high performance and

concisely, and model-based development should be

realized as soon as possible. 

The engine control system is redundant because the

torque is controlled by multiple inputs, such as throttle

angle, fuel injection quantity, and spark timing. These

inputs have a time-delay. Specifically, in the port-

injection engine, the fuel injection quantity has a delay

of one cycle. Moreover, the system has both time-

dependent and crank angle-dependent dynamics, that

is, a continuous time nonlinear phenomenon in each

cylinder is switched by discrete valve opening and

closing events. In addition, the system is multi-cyclic,

that is, the intake, combustion (compression / expansion),

and exhaust strokes are repeated cyclically in each

cylinder, where the combustion stroke does not occur

simultaneously in multiple cylinders.

In current engine control design, the main control

method is based on maps and if-then rules and makes

use of the experience of experts. However, in the

design and verification processes for a new engine, this

requires a great deal of time and patience. 

Recently, many model based design methodologies

have been proposed; for example,
(1-11)

for idle speed

control,
(12-21)

for air-fuel ratio. Literatures for automotive

and engine control have also been published.
(22,23)

Nevertheless, these methodologies combine use of

partial physical models, polynomial expressions, and

tables or approximate a objective input-output relation

by ARX and dead time. Those are not physical models

of whole engine systems. Therefore, these methodologies

must treat engine systems as cooperation systems or

switched systems. As a result, the analysis of the

control system and the optimality could not be discussed

sufficiently, because, in these methodologies, the inputs

are calculated without consideration of the interactions

among all of the state variables in the engine.

The present study proposes a model representation

of multi-cyclic phenomena for multi-cylinder engine

systems. Section 2 briefly introduces the SICE

benchmark model. 

Section 3 describes a method of deriving a simple

model, which is periodically time-varying, for an

engine system with complicated physical phenomena.

We also introduce the concept of role state variables,

by which the derived model can be transformed into a

time-invariant state space model, and discuss the

stabilizability of those models. Using the time-
Reprinted from SICE Journal of Control, Measurement, and System
Integration, Vol.1, No.4, pp.320-328, Copyright 2008, with permission
from the Society of Instrument and Control Engineers.



invariant state space model, optimal design examples

of cold start feedforward and feedback control are

demonstrated in Section 4, and Section 5 describes a

numerical experiment. Finally, Section 6 presents the

conclusions of the present study.

2. Benchmark model 

The SICE Research Committee on Advanced

Control of Engines has provided a SICE benchmark

model (benchmark model) and has set the cold start

control as a benchmark problem.
(24)

Figure 1 shows the benchmark model, a V6 spark

ignition engine, which is composed of six submodels:

an air model, a fuel model (called PR model), a

cylinder model, a valve-temperature model, a port-

temperature model, and a piston-crank model. These

models are expressed according to the following

fundamental equations:

Gas equation:

· · · · · · · · · · · · · · · · (1)

Mass conservation:

· · · · · · · · · · · · · · · · (2)

Energy conservation:

· · · · · · · · · · · · · · · · · · (3)
Translation and rotation equations of motion (Piston-
crank dynamics):

· · · · · · · · · · · · · · · · (4)

Fuel behavior model:

· · · · · · · · · (5)

where
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and the suffixes mean as follows: j ∈{1, 2, ⋅⋅⋅, 6}:

cylinder's number, i ∈{1, 2}: bank's number, J1 = {1, 3,
5}, J2 = {2, 4, 6}. Note that the cylinder model includes

combustion and cooling loss, and the port-temperature

model expresses the temperatures of the left and right

banks. In addition, the exhaust model is approximated

in the atmosphere.

The benchmark model has 13 control inputs: one

throttle angle, six fuel injection quantities, six spark

timings, and two outputs: engine speed and throttle

flow. 

3. Modeling

The benchmark model is complex, where both time-

dependent and crank angle-dependent dynamics exist

over six cylinders. Therefore, a simplified model is

needed for a practical controller design from the

viewpoint of computational load.

Moreover, it is important to maintain the state

variables to be physically meaningful in this model

reduction process, considering the practical objectives

and constraints more effectively. Here, we will choose

the sampling points based on the crank angle to derive

a simplified discrete crank angle model as follows. 

1st step A set of nonlinear differential equations Eqs.

(1)-(5) are solved by approximate analytical

techniques to obtain the state variables at each

sampling point. Thus, a nonlinear, periodically time-

varying state space model is derived.

2nd step Using the new concept of role state variables,

the periodically time-varying state space model is

transformed into a time-invariant state space model.

3. 1  Sampling point and state variable

The engine system switches the strokes of intake,

combustion and exhaust by opening and closing of

intake and exhaust valves. We propose that all of the

states are calculated at the end of each stroke

(switching point) and at the middle of each stroke

(middle point) for six cylinders. Figure 2 shows the

proposed sampling points "k". Therefore, one cycle,

i.e., 720 crank angle [degCA] is divided into six

sampling points, each of which contains three

switching points and three middle points. Note that the

discrete crank angle model is discretized

approximately every 120 degCA, not precisely every

120 degCA, because these sampling points do not

occur at strictly the same time.

The discrete crank angle model has 35 state

variables: seven masses and seven pressures in the

surge tank and each cylinder, engine speed, eight

temperatures of the valve of each cylinder and of the

left and right banks, 12 fuel amounts adhering to the

valve of each cylinder, and the port of each cylinder.

3. 2  Periodically time-varying state space model

It is difficult to obtain the exact behaviors at each

sampling point because the behaviors are subject to the

nonlinear differential equations Eqs. (1)-(5). Therefore,

we derive a periodically time-varying state space

model using approximate analytical techniques as

below: 

(a) The masses and pressures in the surge tank and

each cylinder during the intake stroke and the

exhaust stroke are obtained from the gas equation
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Eq. (1) and the conservation laws Eqs. (2) and (3)

using stationary approximation at every sampling

point. Note that, for six cylinders, the derived

model can strictly distinguish the case of two

cylinders at the intake (exhaust) stroke at the same

time from that of one cylinder at the intake

(exhaust) stroke.

(b) The mass and pressure in each cylinder and the

piston work of each cylinder during the combustion

stroke are obtained from the gas equation Eq. (1)

and the conservation laws Eqs. (2) and (3) using the

approximated cooling loss model. Note that mass

and pressure at the opening of the exhaust valve and

the piston work are expressed using only the states

at the closing of the intake valve without using the

states under combustion.

(c) The square of engine speed is convenient for

approximating analytical techniques for Lagrange

equations Eq. (4) with constraints, which express

the reciprocating dynamics of the six pistons, the

rotational dynamics of the crank, and their interlock.

(d) The temperature of the valve of each cylinder and

the temperature of the left and right banks are

derived from the conservation law Eq. (3) using

approximate analytical techniques for the cooling

loss model and integral terms. Note that the valve

temperature at the opening of the exhaust valve is

expressed using only the states at the closing of the

intake valve without using the valve temperature

under combustion.

(e) The fuel model is easy to discretize from the

original model Eq. (5) in the benchmark model as

follows: for #jeE(k) cylinder at the end of exhaust

stroke (eE) at sampling point k, 

· · · · · · · · · · · · · · · · · · (6)

where ûf(k) is the fuel injection quantity of #jeE(k)

cylinder, Fc(k) is the fuel quantity into   #jeE(k) cylinder.

And then pυ, rυ, pp, and rp are easily derived from fuel

parameters X, Y, and sampling time.

3. 2. 1  Masses and pressures during intake stroke

Now we will describe briefly the intake stroke in the

process (a). The intake stroke from sampling points k to

k+1 consists of two phases. For six cylinders, in the

first phase of [ts1, tf 1] two cylinders' (e.g., #j1 and #j2)

valves are open, and in the second phases of [ts2, tf2]

with ts2 = tf 1, one cylinder's (e.g., #j1) valve is open, the

other cylinders' (including #j2) valves are close. Note

that the state variables in the intake stroke are

composed of the masses and pressures in the surge tank,

#j1, and #j2 cylinder. Furthermore, the state variables at

the sampling point k correspond with those at t = ts1, and

the state variables at the sampling point k+1 correspond

with those at t = tf 1 for #j2 cylinder and at t = tf 2 for the

surge tank and #j1 cylinder.

From Eqs. (1), (2), and the first and second equations

of Eq. (3) where, for j = j1, j2, the flow of exhaust valve

meυj = 0 , the combustion energy qbj = 0, it is easy to see

that the following equations hold 

· · · · · · · · · · · (7)

· · · · · · · · · · · · · · · · · · (8)

where i∈{1, 2} denotes the phase, I1 = {j1, j2}, I2 = {j1},

P0 and ρ0 are pressure and density of outer air. And then

κa, κcj, κ0 are specific heat ratios in the surge tank and in

#j cylinder, and of outer air, respectively. Note that Cυ*

= R/(κ*−1), Cp* =κ*R/(κ*−1) with * = a, cj, o.

By an experimental observation that the pressure of

cylinder Pcj(t) for j ∈Ii converges immediately after

opening the intake valve, we suppose that Pcj(t) = Pcj(tfi)

for t∈(tsi, tfi]. Besides, it is assumed that in Eq. (8), qwj =

0 and κ0 = κa =κcj =κ = (: constant.), in the nozzle flow

function mt, the throttle angle ut(t) =ut(ts1) and Pa(t) =
Pa(ts1) for t∈[ts1, tf2). As a result, it is obtained that 

· · · · · · (9)

· · · · · · · · · · · · · · · · · (10)
where 

· · · · · · · · · · · · · · · · · (11)
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At is constant, and Ψ is a nozzle flow function.

From Eqs. (9) and (10), by using the following

assumptions, which are from experimental observations, 

and by using the following facts, derived from ts2 = tf1,

we can express the masses and pressures in the surge

tank and cylinders for the intake stroke, which are a part

of Eq. (24),

· · · · · · · · · · · · · · · · · (12)

where Am, in ∈R
3×3

, Bm, in ∈R
3×2

, Ap, in ∈R
3×3

, Bp, in ∈R
3×2

are constant matrices, and

Next the explanation for the exhaust stroke in (a) can

be derived as well, but in this study, cylinder model for

the exhaust stroke is also approximated in the

atmosphere as well as exhaust model.

3. 2. 2 Mass and pressure, and piston work during

combustion stroke

The detail explanation is omitted here because of the

space limitations.

As a result, in (b), by using each second equation of

Eqs. (1), (2), and (3), the explanations of the mass and

the pressure at the end of combustion stroke, and the

piston work during the combustion stroke can be

represented as follows: 

for #j ∈ jmC(k) cylinder at the middle of combustion

(mC) at sampling point k,

· · · · · · · · · · · · · · · · · (13)

· · · · · · · · · · · · · · · · · (14)

· · · · · · · · · · · · · · · · · (15)

where sampling points k+1, k, k−1 respond times at the

end of combustion (teC), at the middle of combustion

(tmC), and at the end of intake (teI), respectively. And

then ap1, ap2, aw1, and aw2 are constants. ûs(k) and Fc(k)

and âc(k) are spark timing and fuel quantity, and air-fuel

ratio, respectively, for the cylinder at the middle of

combustion, at sampling point k. gp and gw are functions

of spark timing, Hf is the lower heating value as a

function of air-fuel ratio. Note that, for convenience

sake, 

· · · · · · · · · · · · · · · · · · · · (16)

because Pcj (k) is not needed for calculation of Pcj (k+1).

And, In facts, 

· · · · · · · · · · · · · · · · · · · (17)

3. 2. 3  Engine speed

As a result, in (c), by using Eq. (4), the explanation of

the square of engine speed Ω(=ω2
) can be represented

by 

· · (18)

where, for six cylinders, 

jmI(k), jeE(k), jmE(k), jeC(k), and jmC(k) are the cylinders'
numbers at the middle of intake stroke (mI), at the end
of exhaust stroke (eE), at the middle of exhaust stroke
(mE), at the end of combustion stroke (eC), and at the
middle of combustion stroke (mC), respectively, at
sampling point k. And aΩ, amI, aeE, amE, and aeC are
constants.
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3. 2. 4  Temperature of each valve and each bank

As a result, in (d), by using the third equation of Eq. (3),

the explanation of the temperature of each valve for six

cylinders can be represented as follows: 

1) for #j∈{jeC(k), jmE(k), jeE(k), jmI(k)} cylinder

· · · · · · · · · · · · · · · · · (19) 

2) for #j∈{jmC(k)} cylinder

· · · · · · · · · · · · · · · · · (20)
where

atυ1, atυ2, atυ3, atυ4, aυinυ, ax1, and ax2 are constants, gx is a

function of spark timing ûs. Note that, as well as Eqs. (14)

and (15), Eq. (16) is used, Eq. (17) is true. And for the

same reason with Pcj of Eq. (16), 

· · · · · · · · · · · · · · · · · · · (21) 

Next, in (d), by using the fourth equation of Eq. (3),

the explanation of the temperature of each bank for six

cylinders can be represented as follows: recalling that

J1 ={1, 3, 5}, J2 ={2, 4, 6}, 

1) for #i bank with Ji ={jeC(k), jeE(k), jeI(k)} 

· · · · · · · · · · · · · · · · · (22)

2) for #i bank with Ji ={jmC(k), jmE(k), jmI(k)} 

· · · · · · · · · · · · · · · · · (23)

where jeI(k) is the cylinder's number at the end of intake

stroke (eI) at sampling point k. And atp1, atp2, and atp3 are

constants. In fact, Eq. (17) is true. Here McjmC(k)(k)

=McjmC(k)(k−1).

3. 2. 5  Integrated mode

From combining each discrete crank angle model

Eqs. (12)-(14), (16)-(23), and (6), as outlined in (a), (b),

(c), (d), and (e), we obtain the following periodically

time-varying state space model,

· · · · · · · · · · · · · · · (24)

where the notations are used as follows:

Figure 3 shows the entire model of Eq. (24). Note

that the total delay is five samples in the fuel model

because the torque is generated one cycle after the fuel

injection quantity is specified as the opening exhaust

valve. The delays of the throttle angle and the spark

timing indicate that throttle opening and spark are

executed one sample after specified. Furthermore, the

torque, the thermal efficiency, and the specific fuel

consumption can also be expressed by the state variable

x and the input u.

Figure 4 shows the validation of the obtained model

(Fig. 3). These errors are mainly caused by approximating

the cooling loss. Notice that the computational load of

the obtained model is less than 1/100 that of the

benchmark models Eqs. (1)-(5).

3. 3  Time-invariant state space model

3. 3. 1  Role state variable

Table 1(a) summarizes Fig. 2, showing the relation

among the cylinder number, the sampling point, and the
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types of strokes. In Table 1(a), ξj is the state variables of

mass, pressure, and valve temperature in the #j
cylinder. It is easy to see that the state transition

function at sampling points k to k+1 is different from

that at sampling points k+1 to k+2, because the stroke of

ξj at sampling points k to k+1 is different from that at

sampling points k+1 to k+2. This is why Eq. (24) is

time-varying and periodical.

Next, we introduce a new state variable. The relation

shown in Table 1(b) is the same as that shown in Table 1(a),

except with respect to how to choose the state variables.

In Table 1(b), the state variable ξ1 is defined in terms of

the mass, pressure, and valve temperature at the middle

of the combustion stroke (mC). Similarly, state

variables ξ2 to ξ6 are defined as mass, pressure, and

valve temperature under the corresponding strokes. We

define these state variables ξ as role state variables.

Note that role state variables are continuous values.

The state transition function of ξi at sampling points k
to k+1 is the same as that at sampling points k+1 to k+2

because the state variable ξi is always in the same

stroke. Therefore, the periodically time-varying state

space model of Eq. (24) can be transformed into a time-

invariant state space model if the role state variables are

used.

When the role state variables are used, there exist

only three inputs: the spark timing, the fuel injection

quantity, and the throttle angle. We refer to these inputs

as role inputs. The role input of spark timing is a

reduced input from six spark timings of all of the

77

http://www.tytlabs.co.jp/review/© Toyota Central R&D Labs., Inc. 2011

R&D Review of Toyota CRDL, Vol.42 No.1 (2011) 71-81

Throttle angle

Spark timings

Fuel injection
quantities

Fuel model

ui

s

f

s

f

u

u

u

u

delay

delay

delay

Air, Cylinder, Piston-crank,
Valve-temp., and Port-temp. models

Engine speed
Throttle flow

delay

(1   1)

(6   1)

(6   1) (3   1)

(1   1)

(1   1)
F   (k+1)= A   (k)F   (k) + B   (k)u  (k)wv fv wv fv f

^

F   (k+1)= A   (k)F   (k) + B   (k)u  (k)wp fp wp fp f
^

F (k)= C   (k)F   (k)+C  (k)F   (k)+D u (k)c fv wv fp
^

f f

^
wp

x (k+1)=f   (x (k), z  (k))c c,k c c
-

y(k)=h  (x (k), z  (k))c c c

z -1

z -1

z -3 z c

tu
su
cF

=
^

Fig. 3 Periodically time-varying state space model.

0 0.4 0.6 1 1.2 2
0

200

400

600

1000

0.2 0.8 1.4 1.6 1.8

800

0 0.4 0.6 1 1.2 2

20

40

60

100

0.2 0.8 1.4 1.6 1.8

80

E
n
g
in

e
 s

p
e
e
d
 (

rp
m

)

Time (sec)

Benchmark model

Discrete CA model

  
  
  
  
  
 P

re
s
s
u
re

in
 t
h
e
 s

u
rg

e
 t
a
n
k
 (

k
P

a
)

120

0

Fig. 4 Validation.

Sampling 

      Point
State Variables

0 1 2 3 4 5 6 7

ξ 1 at #1

ξ 2 at #2

ξ 3 at #3

ξ 4 at #4

ξ 5 at #5

ξ 6 at #6

mC

eI

mI

eE

mE

eC

eC

mC

eI

mI

eE

mE

mE

eC

eC

eC

eC

eC

eC

eE

eE

eE

eE

eE

eE

mC

mC

mC

mC

mC

mC

eI

eI

eI

eI

eI

eI

mI

mI

mI

mI

mI

mI

mE

mE

mE

mE

mE

Table 1 Relation between state variables and role state variables:
mI: Middle of Intake stroke, mC: Middle of Combustion stroke, mE: Middle of Exhaust stroke,
eI: End of Intake stroke, eC: End of Combustion stroke, eE: End of Exhaust stroke, #: cylinder number

(a) State variable

Sampling 

      Point
Role

State Variables

ξ at mC

ξ at eI

ξ 3 at mI

ξ 4
at eE

ξ 5
at mE

ξ 6
at eC

1

2

^

^

^

^

^

^

0 1 2 3 4 5 6 7

#1

#2

#3

#4

#5

#6

#2

#3

#4

#5

#6

#1

#3

#4

#5

#6

#1

#2

#4

#5

#6

#1

#2

#3

#5

#6

#1

#2

#3

#4

#6

#1

#2

#3

#4

#5

#1

#2

#3

#4

#5

#6

#2

#3

#4

#5

#6

#1

(b) Role state variable

ˆ

ˆ ˆ

ˆ

ˆ

ˆ



cylinders, as well as the role input of fuel injection.

Therefore, it is important to grasp the correspondence

between the role inputs and the real inputs. Note that

the role input of the throttle angle is equal to the real

input.

Using the role state variables and the role inputs, the

periodically time-varying state space model of Eq. (24)

is transformed into the following time-invariant state

space model,

· · · · · · · · · · · · · · · · (25)

where the notations are used as follows:

Figure 5 shows an entire model of Eq. (25).

The concept of the role state variables has been

discussed here in the case of six-cylinders. Note,

however, that the discussion holds for any number of

cylinders. In fact, basically, we should select sampling

points which are divided one cycle, i.e., 720 degCA into

the number of cylinders. And then, states of divided

transition are selected as role state variables with a same

set of state transition functions in each sample interval.

3. 3. 2  Permutation matrix

This section clarifies the relation between the role

state variables and the state variables, as well as the

relation between the role inputs and the real inputs.

From the relation between the role state variables ξi
and the state variables ξj in Table 1, using the following

permutation matrix Q, the transformation between ξ(k)

and ξ(k) is given by

· · · · · (26)

where k = k mod 6. Similarly, the relation between the

role inputs and the real inputs is given by

· · · · · · · · · · · · · · · · · (27)

where rs =[0  1  0  0  0  0]
T
, rf =[0  0  0  0  0  1]

T
.

3. 3. 3  Stabilizability

We consider some linearized models around a steady

state to clarify the relation between the stabilizability of

the time-invariant state space model Eq. (25) with the

role state variables and that of the periodically time-

varying state space model Eq. (24). 

Equations (28) and (29) indicates the linearized state

space models derived from the periodically time-

varying state space model Eq. (24) and the time-

invariant state space model Eq. (25), in which Δu and

Δû, Δx and Δx, and Δy denote the perturbations of

inputs, states, and outputs, respectively, from a steady

state. Here, we assume that in a steady state, the fuel

quantity in a cylinder is equal to the fuel injection

quantity, and thus the fuel model, the valve-temperature

model, and the port-temperature model can be

disregarded.

· · · · · (28)

· · · · · · · · · · (29)

where
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Theorem In Eqs. (28) and (29), the periodically time-

varying state space model is stabilizable if the

time-invariant state space model is stabilizable.

Proof If the time-invariant state space model is

stabilizable, there exists a gain matrix F such that Â +
BF is stable.

Substituting Δû(k) = FΔx(k) into Δu(k) yields Δu(k) =

F(k)Δx(k) where F(k) is given by

· · · · · · · · · · · · · · · · · (30)

The periodically time-varying state space model is

then given by 

· · · · (31)

where

· · (32)

The stability of the periodically time-varying state

space model is decided according to the transition

matrix from arbitrary sampling point k to sampling

point k+6, i.e., by one cycle

· · · · · · · · · · · (33)

where from Eqs. (31) and (32), it is easy to see that

· · · · · · · · (34)

Therefore, it is clear that Φ(k+6, k) is stable when

Â+BF is stable, which means that the theorem has been

proven.                                                                                             

This theorem implies that the stabilization problem of

the periodically time-varying state space model can be

reduced to that of the time-invariant state space model.

In addition, it is easy to see that a similar theorem holds

with respect to detectability. Therefore, we can use the

control theory of time-invariant systems in the design

of an engine feedback controller.

4. Design example

The benchmark problem mainly sets up the following

control specifications.

• The engine speed, 650 ± 50 rpm, should be reached

in 1.5 seconds after cold start. 

• The overshoot of the engine speed should be as

small as possible.

• The engine speed should converge to 650 rpm, and

so the steady state of engine speed, 650 rpm should

be asymptotically stable.

Figure 6 shows the design flow diagram.

1st step The sets of the steady states and inputs are

obtained numerically using the nonlinear time-

invariant state space model of Eq. (25) without the

fuel model, the valve-temperature model, and port-

temperature model, in which a set of 15 nonlinear

algebraic equations x = f(x, û) should be solved

numerically with Ω(∈ x) = 650 rpm. 

2nd step An optimal feedforward control inputs for the

1.5 seconds after cold start is searched using Eq. (25),

a performance index (square sum of the engine

speed error), and some constraints (engine speed,

inputs, misfire, and stall). 

3rd step An LQI controller is obtained by using the

linear time-invariant state space model of Eq. (29)

and considering the unit delays of the inputs.

Figure 7 shows the cold start controller designed in

the present study. Here Δxr = [ΔMT ΔPT ΔΩ]T
, ∈ R15,

z ∈ R7
is unit delay of inputs, ε ∈ R7

is integrator.

5. Numerical experiment

Using the benchmark model and the designed

controller given in Fig. 7, numerical experiments for
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cold start control were conducted. Figure 8 shows

results that satisfy the specifications of the benchmark

problem. In Fig. 8, the feedback control was executed

from the sixth cycle (approximately 1.8 seconds), at

which time the temperatures of the valves of all of the

cylinders were near steady state. Moreover, the

feedforward control inputs were kept at the steady state

values after this time. Note that in Fig. 8, the spark

timing and the fuel injection quantity are plotted for

every sample, i.e., for different cylinders.

6. Conclusions

The present paper proposes a model representation of

multi-cyclic phenomena for a multi-cylinder engine

system using the new concept of role state variables in

order to design an optimal multiple inputs. The features

of this model representation are as follows. 

• The periodically time-varying state space model is

equivalently transformed into the time-invariant

state space model using the role state variables. This

holds for any number of cylinders.

• The stabilizability of the time-invariant state space

model implies the stabilizability of the periodically

time-varying state space model, as well as

detectability.

• The time-invariant state space model enables an

optimal design for periodical engine system.

• The time-invariant state space model and the

permutation matrix introduce some simplification in

the program structure when the controller is

implemented. 

In the future, MPC will be applied explicitly to

consider the constraints of inputs.
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