
© Toyota Central R&D Labs., Inc. 2012 http://www.tytlabs.co.jp/review/

R&D Review of Toyota CRDL, Vol.43 No.2 (2012) 53-61 53

Research Report
False-negative-free Interrupt Race Condition Detection Using Multiple
Static Code Analysis Methods

Yutaka Inamori and Nobuyuki Yamada

Report received on Apr. 11, 2012

Interrupt handlers are used in vehicle control programs for high responsiveness but are

a possible cause of data races. The present paper describes a detection method for interrupt race conditions

that produces no false negatives and a smaller number of false positives. The proposed method is

characterized by a mechanism whereby the masses of false positives are sifted through using five types of

static code analysis methods that are free from false negatives. One of these methods identifies possible

interrupt states for every statement using abstract interpretation and determines the possibility of interruption

in accessing a shared memory. Another of these methods uses the model checker SPIN to verify the non-

existence of an execution path creating a race condition.

Static Code Analysis, Interrupt Race, Data Race, Model Checking,

Automotive Software, Code Inspection

1. Introduction

Interrupt handlers are used in automotive software

for the purpose of ensuring high responsiveness.

However, they may cause data races (interrupt races)

that are difficult to detect by software tests. Therefore,

interrupt races are to be prevented from the standpoint

of high reliability of automotive software. An interrupt

race is a rare behavior that occurs only when an

interrupt handler is called within a specific narrow

slice of time. This is why interrupt races are rarely

found using test technologies and must be found by

other means, such as design review or code inspection,

in order to assure high reliability.

However, in recent years, the larger and more

complicated automotive software becomes, the longer

it takes to check the absence of interrupt races. The

process of the checking has room for improvement and

we focused on the process of code inspection, in

which, after code implementation, a number of people

look into whether a source code has flaws that cause

interrupt races. This takes a great deal of time because

it is difficult to fully examine the control flow of a

program, including the interrupt handlers.

Therefore, we developed a detection method for

interrupt race conditions in order to automate to a large

degree the flaw inspection process of interrupt races.

The following are the requirements of the method:

• Detection of interrupt races without omissions in

order to leave no flaws on interrupt races in the test

process.

• Reduction of false positives
*1

in order to reduce the

number of worker-hours required for manual flaw

inspection.

• Minimization of manual works, for example the

insertion of assertion codes into original source code.

In the present study, we developed a method in

which the masses of false positives are sifted through

multiple stages of static code analysis methods that

detect races without producing false negatives. Control

flow analysis, pointer analysis, abstract interpretation,

and model checking are adapted as analysis methods

in the order of increasing analysis time in order to

shorten the total analysis time.

The remainder of the present paper is organized as

follows. Section 2 defines the problem to be solved in

the present study, and Section 3 describes research

related to data race detection with a focus on static

code analyses. Section 4 outlines the proposed

approach, and Section 5 explains the details of the

proposed approach. Section 6 introduces a newly

developed system that is used to demonstrate the

*1
A false positive means that part of a program without flaws is
detected incorrectly, and so does not influence the quality of the
program.

R&D Review of Toyota CRDL, Vol.43 No.2 (2012) 53-61

usefulness of applying the proposed approach to

automotive software production.

2. Definition of the Problem

This section describes the object of analysis of the

proposed method. In addition, the definition of the

problem to be solved is presented, and related

terminologies are explained.

2. 1 Object of Analysis

The object of analysis is a C program that is executed

on a unit processor without an OS and is composed of

a main program and interrupt handlers. The main

program and interrupt handlers send and receive data

using shared memories.

2. 2 Definition of Interrupt Race

An interrupt race is a situation in which a main

program and an interrupt handler (or two interrupt

handlers) cause a data race. In such a case, both A and

B below occur (Fig. 1):

A While a low-priority function accesses a shared

memory, an interrupt occurs and a high-priority

function accesses the same shared memory for a

short time.

B At least one of the above three accesses is a write

access.

In A, low-priority function refers to a function that is

called by the interrupted task, and high-priority

function refers to a function that is called by the

interrupting task. Here, short time is defines as the

interval between the start time and the finish time of

one function. The same shared memory means that the

access memories of the above three accord with one

another bit-by-bit.

In the example of Fig. 1, the value of x, which is first

read in branch condition expression [1], is overwritten

by sentence [2] in the high-priority function. In this

case, sentence [3] reads a value different from that in

branch condition expression [1]. If this behavior is

unintended, the program is to be corrected.

2. 3 Location of Interrupt Race

A location of an interrupt race or a possible interrupt

race is defined as a triple of the following three

sentences:

• A sentence in which the first access to a shared

memory is performed in a low-priority function ([1]

in Fig. 1).

• A sentence in which an access to the same shared

memory is performed in the high-priority function

([2] in Fig. 1).

• A sentence in which the second access to the shared

memory is performed in the low-priority function

([3] in Fig. 1).

Each sentence is represented by the name of the

function to which it belongs, a line number, and the

name of the task (the main function or an interrupt

handler) that calls the function directly or indirectly.

2. 4 Detection of Interrupt Races

In the present study, the proposed method requires

the locations of the interrupt races to be detected with

no omissions. In other words, if a program includes

flaws that cause interrupt races, all of the locations of

interrupt races should be found. At the same time, the

number of false positives (mistakenly detecting the

locations at which interrupt races do not occur) should

be as small as possible.

3. Related Research

Including interrupt races, research on data races

consists of dynamic analysis (accompanying the

execution of a program or simulation) and static

analysis (using static code analysis). Dynamic

analysis
(1)

focuses on finding as many flaws as

possible, so that less attention is paid to false negatives.

In contrast, a number of static analyses can detect

data races with no omissions, although the number of

54

© Toyota Central R&D Labs., Inc. 2012 http://www.tytlabs.co.jp/review/

[1] read access

[3] read access

[2] write access

High-priority FunctionLow-priority Function

Execution path: [1]→[2]→[3] Interrupt race!

Interrupt

Fig. 1 Example of interrupt race.

55R&D Review of Toyota CRDL, Vol.43 No.2 (2012) 53-61

with the following judgment criteria (1 to 5 below). In

order to prevent false-negatives, all of the judgments

are to determine whether an interrupt race can or may

occur and narrow down items that may have interrupt

races. In order to shorten the analysis time, the

judgments are arranged in order from shortest to

longest.

1. Judgment of access pattern: Do the type and

number of accesses satisfy the condition for

interrupt race?

2. Judgment of simultaneity of accesses: Do the two

accesses ([1] and [3] in Fig. 1) in a low-priority

function exist on the same control flow?

3. Judgment of interrupt state: Are the two accesses

([1] and [3]) in a low-priority function protected by

a DI (Disable Interrupts) instruction?

4. Judgment of agreement of access memory: Do

both a low-priority function and a high-priority

function access the same memory by the bit?

5. Judgment of existence of execution path: Does an

execution path (through [1], [2], and [3]) that causes

interrupt races exist?

The 4th judgment uses pointer analysis, and the 5th

judgment uses model checking, both of which are

placed in the latter part of the judgments because of

their longer analysis time. In the next section, each

judgment will be explained in detail.

5. Details of the Proposed Interrupt Race Detection

Method

5. 1 Judgment of Access Pattern

Whether the types and numbers of accesses fit the

condition of the interrupt race is judged, i.e., two

accesses in a low-priority function and one access in a

high-priority function. The judgment can be performed

with the information in the itemized list.

© Toyota Central R&D Labs., Inc. 2012 http://www.tytlabs.co.jp/review/

false positives tends to increase. Research into static

analysis includes nesC
(2)

and LOCKSMITH.
(3)

nesC is

an extension of C that can detect flaws in which

accesses to a shared memory are performed outside the

atomic region. LOCKSMITH verifies whether the

accesses to a shared memory are protected in a

consistent manner by using type inference. However,

although these two methods verify the existence of the

specific access protection (atomic regions or locks),

these methods do not analyze the other access

protection schemes (for example, access control by

mode variables), which leads to numerous false-

positives.

4. Overview of the Proposed Interrupt Race

Detection Method

In order to detect interrupt races with no omissions,

the following approach was adopted. First, the

locations of possible interrupt races are enumerated

exhaustively and a list of candidate locations of

possible interrupt races is composed. Then, each

location is judged from various standpoints to

determine whether it is possible to trigger an interrupt

race. Locations that are judged to be race-free are

eliminated from the list, and the final list shows the

locations of possible interrupt races.

In order to exhaustively enumerate the locations of

possible interrupt races, it is necessary only to

enumerate the global variables and static variables that

each task (a main program or an interrupt handler)

accesses and to count all of the pairs of tasks that both

access the same memory. As a result, a list called an

itemized list to be judged is generated automatically.

Each item on the list contains information about the

location of a possible interrupt race, types of memory

accesses (read/write), and the name of a shared

variable (Fig. 2).

For each enumerated item, whether an interrupt race

can or may occur is judged in a step-by-step manner

Item
No.

Shared
variable

Low-priority function High-priority function Judgment results

No race/
Possible race

Function
 name

Access [1] Access [3] Caller
Function

name

Access [2] Caller

Line No. Access
type Line No. Access

type
Process
name Priority Line No. Access

type
Process
name Priority

1 x fun1 110 read 113 read main 0 sub1 15 write int1 3 ?
2 y sub1 53 write 54 write int1 3 sub2 22 read int2 5 ?
… … … … … … … … … … … …

Fig. 2 Itemized list to be judged.

56

© Toyota Central R&D Labs., Inc. 2012 http://www.tytlabs.co.jp/review/

R&D Review of Toyota CRDL, Vol.43 No.2 (2012) 53-61

5. 2 Judgment on Simultaneity of Accesses

In order to judge whether two accesses ([1] and [3]

in Fig. 1) to a shared memory occur while a low-

priority function is executed once, whether the two

statements in which the two accesses are performed

are on the same control flow is examined

automatically. Based on the control flow diagram

generated from C source code, reachable statements

from each statement and to each statement are

analyzed, and whether the reachable statements from

statement [1] include statement [2], or vice versa, is

judged.

5. 3 Judgment on Interrupt State

5. 3. 1 Abstract Concept

Judgment on the interrupt state is performed based

on whether the interrupt state disables all of the paths

between the two accesses ([1] and [3] in Fig. 1). If the

judgment is true, accesses [1] and [3] are never

interrupted, i.e., interrupt races never occur.

The following points are to be considered in realizing

the judgment:

a. The interrupt state changes according to the

execution path for the case in which an interrupt

instruction, DI (Disable Interrupts) or EI (Enable

Interrupts), exists in a branching statement (if-

statement or switch-statement) (left-hand side of

Fig. 3).

b. The interrupt state in a loop statement is dependent

on not only the interrupt state of the former

statement of the loop statement, but also on the

interrupt instructions in the loop statement (center

of Fig. 3).

Enabled

Disabled Enabled

Disabled

a (branch statement) b (loop statement)

…

Enabled

c (function call statement)

Fig. 3 Relationship between control flow and interrupt

state.

c. The interrupt state is determined not only by

interrupt instruments on the same function, but also

by those on caller functions and callee functions

(right-hand side of Fig. 3).

The method of searching interrupt instruments on the

upstream execution paths is anticipated to be very

complicated. We used abstract interpretation and

developed a method of identifying the interrupt states

of all of the statements in a C program. Abstract

interpretation
(4)

is a static code analysis methods that

abstracts operations and operands that show the

execution states of a program and extracts beneficial

information from the execution results. The present

approach defines abstract operations and abstract

domains on interrupt states of pre-execution and post-

execution of a statement.

It is necessary to analyze the interrupt state while

carefully considering caller-callee relationships.
(5)

In

the present study, we developed a method by which to

analyze each function, which prevents the algorithm

from becoming too complex. This method is show

below.

5. 3. 2 Abstract Domains and Operations

Expressing the Interrupt State

We define the abstract domain Sifg, which shows an

interrupt state at a certain point, as

,· · · · · · · · · · · · · · · · · (1)

where lowifg and highifg show the range of possible

interrupt states, each of which is set to e (enabled
state), d (disabled state), or nil (undefined). For

example, lowifg = e and highifg = d indicate that an

interrupt state of a statement becomes enabled or

disabled. Moreover, inhifg is set to be true or false. If

inhifg is set to be true, then the interrupt state of a

statement is dependent on the interrupt states of the

function call statements that call the function,

including the statement. In the interrupt state of the

pre-execution of the first statement in a function, inhifg
= true without fail. For the cases in which inhifg = true,

lowifg, and highifg may not express the actual upper

range and must be calculated using an application

function (4), which is described later herein, in order

to add information about the interrupt states of the

caller functions. The calculation of the analysis

S low high inhifg ifg ifg ifg= (, ,)

guaranteed to stop in finite steps, because the abstract

domain Sifg forms a complete lattice (Fig. 4) and

consists of finite elements.

The interrupt state at pre-execution of a statement

(hereinafter pre-execution state) is calculated as

follows. If an assign statement does not include a

function call, its pre-execution state is equivalent to its

post-execution state, and if a statement is DI (EI), its

post-execution state never fails to change into d (e).

The interrupt state at the confluence in a branching

statement or a loop statement is calculated using the

following OR-operation:

.

· · · · · · · · · · · · · · · (2)

The operation minifg (maxifg) calculates the minimum

value based on the premise of the relationship e < d.

If a statement includes a function call, its post-

execution state is calculated in reference to the state of

the callee function, because the post-execution state of

a statement with a function call is equivalent to the

post-execution state of the final statement in the callee

function. If inhifg = true in the referred state, then the

following application-function is used:

,

· · · · · · · · · · · · · · · (3)

which means that the referred state inherits the pre-

execution state of itself (the function call statement).

The first term of the left-hand side of Eq. (3) shows

the post-execution state of the last statement in the

callee function, and the second term of the left-hand

side of Eq. (3) is the pre-execution state of itself (the

(, ,) (, ,)

(, ,)

low high true low high inh
low high false O

ifg1 1 2 2 2

1 1

= RR low high inhifg (, ,)2 2 2

(, ,) (, ,)

(min (,)

low high inh OR low high inh
low low

ifg

ifg

1 1 1 2 2 2

1 2= ,,max (,),)ifg high high inh inh1 2 1 2∨

function call statement). In the case of a function call

with a function pointer, the function call is regarded as

a branching and confluence of multiple functions and

its post-execution state is calculated using the OR-

operation of Eq. (2) on the post-execution states of the

last statements in all possible callee functions.

The pre-execution state of a statement is taken over

from the post-execution state of its previous statement.

In the analysis of the interrupt permission level,

which specifies which interrupt handlers are enabled,

it is necessary only to perform calculation in a similar

manner, except that the range of possible interrupt

permission level is set using lowipl and highipl.

5. 3. 3 Judgment of Interrupt State

After calculating the pre-execution state and post-

execution state of each statement in every function, the

interrupt state of the target location is analyzed. Using

the following condition, whether the two accesses ([1]

and [3] in Fig. 1) in a low-priority function are

interrupted is judged:

• lowifg = highifg = d on the pre-execution state of [1]

and no EI exists between [1] and [3].

In this regard, however, when inhifg = true on the pre-

execution state of [1], the actual pre-execution state

must be preliminarily calculated with the application

operation (3).

5. 4 Judgment on Accordance of Access Memory

Whether three accesses ([1], [2], and [3] in Fig. 1) to

shared memories are in bit-by-bit accordance with one

another is judged. In order to analyze possible access

memories and bitwise offsets for all C language

expressions (add-subtract expression of a pointer

variable, cast expression of pointer type, and so on),

we constructed a memory model that holds bitwise

information on variables and developed a pointer

analysis method that can treat bitwise access

information. The details are omitted due to space

limitations.

5. 5 Judgment on the Existence of the Execution

Path

Whether an execution path that causes an interrupt

race exists is judged by model checking. An execution

57

© Toyota Central R&D Labs., Inc. 2012 http://www.tytlabs.co.jp/review/

R&D Review of Toyota CRDL, Vol.43 No.2 (2012) 53-61

Fig. 4 Abstract domain in the interrupt state.

path that causes an interrupt race passes through [1],

[2], and [3] in Fig. 1. The path includes the occurrence

of a high-priority process and the disruption of a low-

priority process.

In the present study, the SPIN
(6)

model checker is

used to model the behaviors of the interrupt handlers.

SPIN is good at modeling the behaviors of concurrent

processes and is applicable for verifying the

occurrence of interrupt races in all cases of interrupt

timing. After program slicing is performed in order to

enhance scalability, the sliced C program is

automatically translated into a promela (model

description language for SPIN) code. Then, an

assertion statement is inserted in order to verify the

execution path of the interrupt race.

The following explains a method of modeling

multiple interrupts and program slicing.

5. 5. 1 Modeling of Multiple Interrupts

The outline of the method for modeling multiple

interrupts in a promela code is given as follows. Each

interrupt handler is modeled as a process with the

“provided clause”, which refers to the following

execution condition:

• Interrupt is permitted (activation condition) or a

process itself is currently executing (continual

condition).

An interrupt state and execution state of each process

are modeled by the global variable in the promela. The

contents of an interrupt handler are modeled as an

infinite loop, and the execution state is set to “currently

executing” at the top of the infinite loop and “finished”

58

© Toyota Central R&D Labs., Inc. 2012 http://www.tytlabs.co.jp/review/

R&D Review of Toyota CRDL, Vol.43 No.2 (2012) 53-61

at the bottom of the infinite loop. These settings

prevent an interrupt process from stopping midstream

and returning to an interrupted process. A stack is laid

on to model the behaviors of multiple interrupts. At the

top of the infinite loop on each process, the information

on the process itself is pushed onto the stack, and at

the bottom, the information is popped off the stack.

These operations enable modeling of the behavior of

multiple interrupts.

5. 5. 2 Program Slicing for Execution Path Analysis

If a C source code with several tens of thousands of

lines is translated into a promela code, SPIN cannot

search all of the state space of the code and is aborted.

Therefore, the proposed method reduces the amount of

code by means of program slicing in terms of

execution path analysis.

What is required for the program slicing is to cut off

of the statements which are out of relation to the

execution condition of the three accesses. The

following shows the basic algorithm that we have

developed (Fig. 5):

Step 1: Three accesses ([1], [2], and [3] in Fig. 1) and

interrupt instructions (DI, EI, and so on) are

defined as necessary codes.

Step 2: All of the branch conditions that are inevitably

passed from the top of the function to

necessary codes are added to necessary codes.

Step 3: For the branch conditions that are added in

Step 2, all of the variables are extracted, and

all of the assign statements to these variables

are added to necessary codes.

Step 4: For the assign statements that are obtained in

[1]

Step
1, 2

[1] [1]

Step
3

Step
2

Step
5, 6

[1]

: access location : necessary code[1]

Fig. 5 Program slicing for execution path analysis.

59

© Toyota Central R&D Labs., Inc. 2012 http://www.tytlabs.co.jp/review/

R&D Review of Toyota CRDL, Vol.43 No.2 (2012) 53-61

Step 3, all of the variables shown on the right-

hand side of the statements are extracted, and

all of the assign statements to these variables

are added to necessary codes.

Step 5: If necessary codes are added in Step 3 or Step

4, return to Step 2, otherwise go to Step 6.

Step 6: All codes except the necessary codes are cut

off.

The basic algorithm does not work well because it

causes the chain of necessary codes in Steps 3 and 4.

Therefore, we improved the basic algorithm, which has

the difference in Step 2 (the improved algorithm

contains Step 2’ instead of Step 2):

Step 2’: Out of all of the branch conditions that are

inevitably passed from the top of the function

to the necessary codes, the branch conditions

that satisfy the specific condition are added

to the necessary codes.

By dropping part of the branching conditions from the

necessary codes, the chain of necessary codes in Steps

3 and 4 is kept small. However, since the dropped

branching conditions are modeled as non-

deterministic, this generates impossible execution

paths (over-approximation) and causes false-positives.

The specific condition we adopt here is that “a

branching condition has only bit variables”. Since most

bit variables are assigned a constant (0 or 1), the chain

of necessary codes is reduced. Furthermore, the

number of states in model checking is reduced because

the promela code has only bit variables.

6. Development and Evaluation of the Proposed

System

Figure 6 shows a prototype system of interrupt race

detection. The preprocessing part generates parse trees,

control flow graphs, and a memory model. The judging

part performs judgment using various types of static

code analyses. Both parts are implemented with Ruby.

For model checking, the part that generates codes for

SPIN and analyses the results from SPIN is also

implemented with Ruby and calls SPIN automatically.

We use the database generated by the Understand,

Scientific Toolworks’ code analysis tool, which

contains information about lexemes, symbols, and

types of references.

This system was developed for application to

practical applications and was targeted on the case in

which a C source code for a customer product, the

scale of which is several tens of thousands of lines, and

has a main process and four interrupt processes. We set

the development goals for this system so that the

system is false-positive-free and the rate of automation

(percentage of automatically judged race-free items

among all items) is equal to or greater than 90%.

The largest problem to solve was the scalability of

the judgment on the existence of the execution path.

Since it is impossible to analyze a large code using

SPIN, the key issue was to reduce the number of states.

In addition to the slicing method shown in Section

5.5.2, we developed algorithms to cut off the interrupt

processes and interrupt instruments that are irrelevant

to execution paths of interrupt race (not shown herein).

As a result, a source code could be reduced to from

one-twentieth to one-fiftieth the original C source

code, and the number of abnormal terminations could

be reduced to 15% among all of the items that were

needed to perform model checking.

Moreover, in order to reduce the number of model

checking operations, we increased the precision of the

former judgments, especially the judgment on the

interrupt state. For example, an early algorithm of the

judgment was as follows:

• lowifg = highifg = d in the pre-execution state of [1]

and lowifg = highifg = d in all of the statements

between [1] and [3].

lexeme
symbol

reference
Understand

database

.C
C program

generation of items

judgment

on interrupt state

on execution path

pre-
process

parse tree
control flow

memory model

judgment item
judgment result

judgment result file

SPIN
.pml

.txt
result of model checking

code for model checking

interrupt race detection system

Fig. 6 System structure.

(CEGAR)
(7)

can be considered, but as the number of

variables in a model increases, the number of states of

a model increases dramatically. When the proposed

method is applied to cases larger than the above case,

the rate of abnormal terminations is expected to

increase. Therefore, there are still challenges to

reducing a state space, for example, by model

improvement, problem partitioning, and so on. For

reference, example data on state numbers in model

checking are presented in Table 1.

Thus, with the result being sufficient, in the future,

the system will be evaluated using several other cases.

7. Conclusions and Future Research

The present paper introduced a method for the

detection of defects that may cause interrupt races by

applying static code analysis methods for C source

codes. The proposed method judges whether accesses

to a shared memory in a low-priority function are

protected by means of identifying the interrupt state

through abstract interpretation. Then, for non-protected

accesses the existence of an execution path that causes

an interrupt race is verified by model checking. This

method is applicable for C programs of approximately

100,000 lines, and its practicality is ascertained.

As automotive software becomes larger, the number

of worker-hours required to ensure high reliability, by

software inspection, software testing, and so on,

increases. In such a situation, the proposed method will

contribute to shortening of the development period. In

the future, we will attempt to solve the problems

associated with incorrect timing (including interrupt

race) through new design and analysis methods.

Through the courtesy and with the permission of

Information Processing Society of Japan this paper is

translated in English and reprinted in full from IPSJ

Symposium Series Vol.2010, No.10 (2010), pp.113-118,

Inamori, Y. and Yamada, N., “Seiteki Kodo Kaiseki ni
yoru Kenshutsumore no nai Warikomikansho
Kenshutsu Shuho no Kaihatsu” (in Japanese).

60

© Toyota Central R&D Labs., Inc. 2012 http://www.tytlabs.co.jp/review/

R&D Review of Toyota CRDL, Vol.43 No.2 (2012) 53-61

Along with the algorithm presented in Section 5.3.3,

the above algorithm is also intuitive. Thus, the

precisions of the two algorithms are thought to be

equal. However, as a result of the detailed analysis of

the two algorithms, false-positives are found to exist,

as shown in Fig. 7. The interrupt states that are

identified in the proposed method using abstract

interpretation are the possible states in consideration

of all of the execution paths. On the other hand, in the

case of examining partial paths (paths from [1] to [3]

in Fig. 7) the algorithm in Section 5.3.3, which scans

interrupt instruments between [1] and [3], turned out

to be more precise. As a result of the other

improvements on the judgment, the number of false-

positives approached zero near the locations at which

interrupt instructions prevent interrupt races. Thus, we

succeeded in reducing the number of model checking

operations.

The following are the results of the case study:

• False-negatives: none

• Rate of automation: 94.3% (better than the target)

• Manual works: only to alter the part of the code that

is dependent on a microcomputer or a compiler

In relation to the rate of automation, approximately

90% of the causes of false-positives were over-

approximation in model checking and abnormal

termination of model checking caused by insufficient

memory.
*2

In order to prevent over-approximation, the

improvement of Step 2’ in Section 5.5.2 (a selection

method of branching conditions) or the introduction of

Counter Example-Guided Abstraction Refinement

Example No. Line No. of
model

No. of
bit variables

State
No.

1 2,559 lines 1 90,000
2 2,572 lines 5 90,000
3 2,659 lines 7 1 million
4 2,653 lines 8 2 million

Table 1 State numbers in model checking.

*2
The remaining causes were of insufficient precision of pointer
analysis.

access [1]

access [3]

On path [1] → [3], there are statements for which the state may be enabled.
⇒ Possible interrupt race (false-positive)

statement
pre-execution state
post-execution state

(inh is abbreviated)

Fig. 7 Example of a false-positive in the judgment of the

interrupt state before improvement.

References

(1) Higashi, M., Yamamoto, T., et al., “An Effective

Method to Control Interrupt Handler for Data Race

Detection”, Proceedings of AST’10 (2010), pp.79-86,

ACM.

(2) Gay, D., Levis, P., et al., “The nesC Language: A

Holistic Approach to Networked Embedded

Systems”, ACM SIGPLAN Notices (Proceedings of
PLDI’03), Vol.38 No.5 (2003), pp.1-11.

(3) Pratikakis, P., Foster, J., et al., “LOCKSMITH:

Context-sensitive Correlation Analysis for Race

Detection”, ACM SIGPLAN Notices (Proceedings of
PLDI’06), Vol.41 No.6 (2006), pp.320-331.

(4) Cousot, P. and Cousot, R., “Abstract Interpretation: A

Unified Lattice Model for Static Analysis of

Programs by Construction or Approximation of

Fixpoints”, Proceedings of the 4th ACM POPL
(1977), pp.238-252, ACM.

(5) Sekiguchi, T., “A Practical Pointer Analysis for C

Language”, Computer Software, Vol.21, No.6 (2004),

pp.34-49, JSSST.

(6) Holzmann, G. J., The Spin Model Checker: Primer
and Reference Manual (2004), Addison-Wesley.

(7) Clarke, E., Grumberg, O., et al., “Counterexample-

guided Abstraction Refinement”, Proceedings of
CAV’00, Vol.1855 of LNCS (2000), pp.154-169,

Springer.

61

© Toyota Central R&D Labs., Inc. 2012 http://www.tytlabs.co.jp/review/

R&D Review of Toyota CRDL, Vol.43 No.2 (2012) 53-61

Yutaka Inamori

Research Fields:

- Reliability of Automotive Software

- Automatic Detection of Software Flaws

- Software Verification with Model

Checking

Academic Society:

- Information Processing Society of Japan

Award:

- IPSJ Yamashita SIG Research Award, 2012

Nobuyuki Yamada*

Research Field:

- Working on Streamlining of Tool

Environment for Effective Development

of ECU (Electronic Control Unit)

Software

*AISIN SEIKI CO., LTD.

