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In this article, a vehicle dynamics integrated control algorithm using an on-line

nonlinear optimization method is proposed for 4-wheel distributed steering and 4-wheel distributed

traction/braking systems. The proposed distribution algorithm calculates the magnitude and direction of tire

forces that satisfy constraints corresponding to the target resultant force and moment of vehicle motion and

also minimizes the maximum μ rate (= tire force / friction circle) of each tire. The convexity of this problem

is shown, and so global optimality of the convergent solution of the recursive algorithm is guaranteed. This

implies that the theoretical limited performance of vehicle dynamics integrated control is clarified. The

proposed algorithm is based on SQP (Sequential Quadratic Programming) and the steepest gradient

algorithm. Calculation performance of the proposed algorithm is compared that of the primal-dual interior-

point method, which is a representative optimization method. Furthermore, the effect of this vehicle dynamics

control is demonstrated by a simulation and experiment comparing various vehicle dynamics integrated

control methods.
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1. Introduction

The motion of a vehicle in the three degrees of

freedom (forward/back, lateral, yaw) is controlled by

the steering and traction/braking forces from the four

tires. If each of the tires can be individually steered and

operated for traction/braking, the task of control grows

from three control inputs (forward/back, lateral, yaw)

to eight, providing redundancy to the system. Vehicles

move using the friction between the tires and the

ground. The frictional forces at the tires have limits

dependent on the conditions of the road surface. These

limits are called the friction circle, and a tire cannot

exert any force on the roadway in excess of the friction

circle. To extend the limits of the performance of a car,

it is necessary to ensure that the forces exerted by all

tires work efficiently in cooperation with each other.

The problem of integrated control of vehicle motion

then becomes how to best use the redundant degrees

of freedom. Since the friction circle constitutes

nonlinear limiting conditions due to the limitations on

the frictional forces at each wheel, the share of the

forward or back and lateral forces and the yaw moment

(vehicle forces and moments) exerted by each tire to

obtain the intended motion becomes a nonlinear

problem.
(1)

The most common approach to the solution

of this nonlinear problem has been to adapt empirical

knowledge,
(2-4)

but in recent years, other methods

which formulate the problem as a mathematical

optimization problem have been advocated.
(5-7)

Mokhimar et al.
(5)

have proposed using the sum of the

squares of the workload of the tires (tire μ rate ×

friction coefficient at the road surface) as an index to

be minimized in 4-wheel steering and 4-wheel drive.

Nishihara et al.
(6)

solved the min-max problem for

minimizing the tire load under the worst possible loads

with respect to the friction circle. This formulation

allows us to estimate the maximum value of the tire μ
rate, and the evaluation function constrains all of the

forces exerted by the tires within the friction circle (tire

μ rate is ≤ 1). The calculation load is far higher under

this optimization scheme than under Mokhimar et al.’s

formulation, but it predicts the yaw moment due to the
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forward/back force separately from the yaw moment

due to the lateral force at each wheel, and thus, allows

the problem to be simplified. It is a key to simplifying

the problem, but it poses limitations on optimizing the

tire μ rate. It would be preferable to devise a different

integrated control scheme eliminating those

limitations, i.e., a more efficient scheme for further

lowering the tire μ rate. Ono et al.
(7)

noted that the

solution of the min-max problem for μ was a weighted

solution in nearly all cases, and proposed a method that

included weighted tire μ rates in the constraints. Not

only does this procedure guarantee minimizing the tire

μ rate in nearly all regions, the number of parameters

to be optimized is cut in half, so it also reduces the

calculation load. Still, sometimes, depending on the

actual vehicle forces and moment balance, the

provided solution to the min-max problem for the tire

μ rate does not represent a weighted solution.

This paper proposes an algorithm based on the tire μ
rate weighting control algorithm of Ono et al.

(7)
that

searches for fractions of the tire μ rate with respect to

the upper limit of the μ rate for each vehicle tire. This

load-distributing algorithm derives an analytical

solution that minimizes the upper limit of the μ rate for

each tire and enables the control system to achieve the

theoretical limit of the integrated control of steering

and thrust at all four tires.

2. Optimization Problem

2. 1  Formulation of the Problem

The vehicle model is described with the coordinates

shown in Fig. 1, in which the X-axis is the longitudinal

2

direction of the vehicle and the Y-axis is perpendicular

to the X-axis. On the assumption that a magnitude Fi
(in this case, i = 1, 2, 3, 4, where 1: left front wheel, 2:

right front wheel, 3: left rear wheel, 4: right rear wheel)

of a friction circle in each of the wheels (i.e., each

wheel friction circle) is known, the direction of the

generating force of each wheel tire and a μ rate (= tire

force / friction circle) in each of the wheels can be

determined to minimize the upper limit value (the

maximum value in four wheels) of the μ rate (= tire

force / friction circle) in each wheel, while securing

the target vehicle body force (a longitudinal force Fx0,

a lateral force Fy0) and target yaw moment Mz0.

Further, the tire force in each of the wheels can be

described as follows, on the assumption that the upper

limit of the μ rate in each of the wheels is set to γ, a

percentage indicating the ratio of the μ rate in each

wheel with respect to the upper limit γ of the μ rate is

set to ri, and the tire generating force direction in each

wheel is set to qi:

Fxi = γri Fi cos qi,· · · · · · · · · · · · · · · · · · · · (1)

Fyi = γri Fi sin qi. · · · · · · · · · · · · · · · · · · · · (2)

By describing the position of each tire as (x, y) = (li, di),

as shown in Fig. 1, the vehicle body force and the yaw

moment can be described by the following constraint

condition.

· · · · · · · · · · · · · · · · · · (3)

· · · · · · · · · · · · · · · · · · (4)

· · · · · · · (5)

By eliminating γ from equations (3)-(5), the constraints

of qi can be obtained as

,

· · · · · · · · · · · · · · · (6)
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Fig. 1 Vehicle model and coordinates.
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,

· · · · · · · · · · · · · · · (7)

where

,· · · · · · · · · · · · · · · · · · · · · · · (8)

, · · · · · · · · · · · · · · · · · · · · · · · · (9)

. · · · · · · · (10)

MF0 is a value for normalizing constraints (6), (7) to

improve the precision of the computation.

Performance function J, which minimizes the upper

limit γ of the μ rate, is defined as the following formula

(11):

· · · · (11)

Since MF0 is a constant value, maximizing J implies

minimizing γ. By substituting (3)-(5) into (11), the

performance function can be rewritten as

. · · · · · · · · · · · (12)

Then, the optimization problem is formulated as

follows.

Problem 1: Finding qi (–π ≤ qi ≤ π), ri (0 ≤ ri ≤ 1)

which maximizes performance function (12) with

constraint equations (6) and (7).

2. 2  Search on a Fixed μ Rate Distribution

Since solutions of the min-max problem of the μ rate
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almost coincide with the equalized μ rate solutions,
(7)

we propose an optimization algorithm that separately

optimizes qi and ri.

In this section, we show that the proposed algorithm

optimizes qi by using SQP (Sequential Quadratic

Programming) with the assumption that ri is fixed. This

means that the μ rate distribution of four wheels is

fixed. It is known that SQP is one of the most effective

methods of nonlinear optimization that guarantees

local optimality.
(8)

SQP is a recursive algorithm which

approximates the nonlinear optimization problem as a

quadratic problem around the optimal solution

calculated in the preceding step. The constraints are

approximated by a first-order Taylor expansion, and

the performance function is approximated by a second-

order Taylor expansion. Then, the optimal solution of

the quadratic problem (optimization of the second-

order performance function with linear constraints) is

calculated. The approximated performance function

can be described as

, · · · · · · (13)

where

· · · · · · · · · · · · · · · · · · · · · · · (14)

,

· · · · · · · · · · · · · · (15)

,
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.

· · · · · · · · · · · · · · (17)
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· · · · · · · · · · · · · · (18)

(13) can be rewritten as an Euclidian norm

minimization problem of p as

,

· · · · · · · · · · · · · · (19)

where p = [p1 p2 p3 p4]
T
.

The linearly approximated constraints can be described

as

, · · · · · · · · (20)

where

,

· · · · · · · · · · · · · · (21)

,
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,
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An Euclidian norm minimum solution satisfying (20)

can be determined as

.
· · · · · · · (25)

In this case, A†
is the pseudo-inverse matrix of matrix

A. Then, q, which expresses the tire force direction in

each of the wheels, may be expressed as

,

· · · · · · · · · · · · · · (26)
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T
.
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· · · · · · · · · · · · · · (29)

and ρ in (27) is a positive constant. In the case that the

penalty function (27) is computed by using the tire

force direction qi of each wheel, as derived by (26),

and penalty function P is reduced, a convergence

computation is carried out a recursive method

repeatedly executing the computation of (14)-(16),

(21)-(24) and (26).

2. 3  Search of μ Rate Distribution

In this section, the proposed algorithm optimizes ri
by using the steepest gradient method. When each

wheel using percentage ri with respect to the upper

limit of the μ rate in each wheel is changed to ri + dri,

it is necessary to correct q in (26), for example, to q +
dq, to satisfy the constraint condition of the target

vehicle body force and moment. The changed amount

dq of q expressing each wheel tire force direction is

expressed as
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where

,
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This case only satisfies the constraint condition of the

target vehicle body force and moment; the correction

is not fixed. In other words, infiniteness of the

correcting methods may be provided; however, for

simplifying the computation, we employ a correcting

method utilizing the derived pseudo-inverse matrix as

it is. In this case, the performance function J in (12) is

changed to J + dJ. The change amount dJ can be

expressed as
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approximation.
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where

,

· · · · · · · · · · · · · · (35)

· · · · · · · · · · · · · · (36)

Each wheel using percentage ri with respect to the

upper limit of the μ rate in each of the wheels is

changed to 

· · · · · · · · · · · · · · (37)

by using the steepest gradient method, before
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computation. In (37), r0 denotes the previous value of

r in the repeated computation, and k denotes a positive

constant. Accordingly, in the case that performance

function J is changed to become enlarged, r is

corrected to become smaller.

Then, the upper limit γ of the μ rate can be derived

from (11) and (12) with r and q, which are calculated

from (30) and (37), as

· · · · · · · · · · · · · · (38)

If the calculated γ by (38) is greater than 1, the

resultant force and moment are restricted to
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2. 4  Global Optimality

By using variable transformation with

xi = ri cos qi, · · · · · · · · · · · · · · · · · · · · · · (40)

yi = ri sin qi, · · · · · · · · · · · · · · · · · · · · · · (41)

problem 1 can be rewritten as the following problem

Problem 2: Finding xi, yi which maximizes the

performance function

· · · · · · · · · · · · · · (42)

with the following constraint equations

· · · · · · · · · · · · · · (43)

· · · · · · · · · · · · · · (44)

· · · · · · · · · · · · · · · · · · · · · · (45)

Problem 2 is clearly a convex problem, and so

problem 1 is also a convex problem. Then, the

proposed algorithm guarantees global optimality of the

convergent point. This means that the proposed

algorithm achieves the theoretical limitation of the

vehicle force and moment when γ calculated by (38)

is greater than 1.
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3. Benchmark

3. 1  Achievement of Theoretical Limitation

This section shows the efficiency of the proposed

algorithm, which achieves the theoretical limitation of

a vehicle force and moment, by comparing it with

general quadratic programming. We consider the

following minimization problem of the sum of squares

of the μ rate as a benchmark; this is an extended

problem of Mokhiamar and Abe.
(5)

Problem 3: Finding Fxi, Fyi which maximizes the

performance function

· · · · · · · · · · · · · · · · · (46)

with constraint equations 

· · · · · · · · · · · · · · · · · · · · · · (47)

· · · · · · · · · · · · · · · · · · · · · · (48)

· · · · · · · · · · · · · · (49)

The solution of problem 3 can be calculated by using

variable transformation and the pseudo-inverse matrix,

as shown in Section 2.2. In this section, the generated

vehicle longitudinal forces are compared for straight-

line braking (Fy0 = 0 N, Mz0 = 0 Nm) on a split μ road

(μ = 1.0, 0.2).

Figure 2 shows the tire forces of a vehicle controlled

by the proposed method and a vehicle controlled by

quadratic programming. Both of the controls achieve

the reference braking force within a moderate area

when the reference braking force = 7,000 N. However,

the vehicle controlled by quadratic programming

cannot achieve the reference braking force in the

critical region when the reference braking force =

10,000 N, even though the vehicle controlled by the

proposed method can. Figure 3 shows the relation

between the reference braking force and μ rate in each

wheel. The μ rate of the front left wheel, which has the

largest friction circle, indicates a large value compared

J
F F

F
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with that of the other wheels, when the vehicle is

controlled by quadratic programming, which

minimizes the sum of square μ rates. Then, the μ rate
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of the front left wheel is saturated first, so that

subsequent reference vehicle force and moment cannot

be achieved. In contrast, the proposed method, which

minimizes the upper limit of the μ rate, calculates the

equalized μ rate solutions, and provides high

performance in the critical region.

3. 2  Calculation of the Optimization

As shown in Section 2.4, problem 1 is a convex

problem, so the problem can be transformed to second-

order cone programming (SOCP). The primal-dual

interior-point method is a powerful method for SOCP.

The calculation speed of the proposed algorithm is

shown in comparison with the primal-dual interior-

point method, which is a representative optimization

method.

Here, the nonlinear constraint 

, · · · · · · · · · · · · · · · · · · · · · · (45)

in problem 2 can be extended to a second-order cone

constraint and linear constraint, as follows.

· · · · · · · · · · · · · · · · · · · · (50)

zi = 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · (51)

Figure 4 shows the relation between the calculation

time and accuracy of solutions using the proposed

method and primal-dual interior-point method under

the condition of straight-line braking on a split μ road,

as shown in Section 3.1. The penalty function indicates

x yi i
2 2 1+ ≤

x y zi i i
2 2+ ≤

(27) with ρ = 1, and it shows an error in the constraint

and performance function (1/J). The proposed method

improves calculation efficiency by the optimization

algorithm that separately optimizes qi and ri. This is

based on the viewpoint that solutions of the min-max

problem of the μ rate almost coincide with the

equalized μ rate solutions. Then, the solution of the

proposed method almost converges to the optimum

point in six steps. In contrast, the calculation time of

the primal-dual interior-point method, which applies

to the extended problem with constraints (50) and (51),

is four times that of the proposed method.

4. Experimental Results

In this paper, a vehicle with 4-wheel distributed

steering and 4-wheel distributed traction/braking

system is assumed, and the steer angle of each wheel

is calculated from the brush model
(11)

as

, · · · · · (52)

where

· · · · · · · · · · · · · · (53)

Ks is the braking stiffness, Kα is the cornering stiffness,

β is the vehicle slip angle, r is the yaw velocity, and u
is the vehicle longitudinal velocity. In this section, the

proposed method is applied to the active front and rear

steering vehicle to demonstrate the high performance

of the distribution algorithm, which achieves the

theoretical limited performance. In other words, the

steer angle is controlled to a mean value of the right

and left reference calculated by (52).

Figure 5 shows the experimental results of straight-

line braking (Fy0 = 0 N, Mz0 = 0 Nm) on a split μ road

(μ = 1.0, 0.2). As a comparison, an ABS (anti-lock

brake system) vehicle without steering control and the

integrated control vehicle with active front steering

system
(12)

are also shown in Fig. 5. The driver driving

the ABS vehicle use the steering wheel to stabilize the

vehicle. In contrast, the vehicle with active front

steering and the proposed method can apply straight-

line braking without using the steering wheel.

Furthermore, the proposed method shows a high
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performance compared with the vehicle with active

front steering. Figure 6 shows the tire forces of the

proposed method. The experimental tire forces are

measured by using a wheel dynamometer. This figure

also shows a theoretical solution assuming a 4-wheel

distributed steering system with high braking

performance (94%).

5. Conclusions

This paper proposes a distribution algorithm of the

vehicle tire forces for 4-wheel distributed steering and

4-wheel distributed traction/braking systems. The

proposed distribution algorithm minimizes the

maximum μ rate of each tire with constraints

corresponding to the target resultant force and moment

of vehicle motion. Convexity of this problem is shown,

and so global optimality of the convergent solution of

the recursive algorithm is guaranteed. This implies that

the theoretical limited performance of vehicle

dynamics integrated control is clarified. The

calculation speed of the proposed algorithm is shown

in comparison with that of the primal-dual interior-

point method, which is a representative optimization

method. In addition, the effect of the proposed vehicle

dynamics control is demonstrated by a simulation and

experiment to compare it with other vehicle dynamics

integrated control methods.
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