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A numerical scheme based on the lattice Boltzmann method for analyzing the

convection-diffusion equation is reviewed in the present paper. The main focus is on the collision operator

used in the lattice Boltzmann method. The most widely used operator is the classical Bathnagar-Gross-

Krook (BGK) operator, which is simple and easy to use for programming. In engineering applications,

however, it suffers from some limitations, such as unexpectedly large computational errors under severe

conditions and the incapability of capturing the anisotropic diffusion process. The multiple-relaxation-time

(MRT) collision operator has been recently proposed to overcome these drawbacks of the BGK operator.

The present paper overviews the lattice Boltzmann scheme using the MRT collision operator, including a

detailed numerical procedure. Several numerical examples are also shown, in which specific problems

consisting of the convection-diffusion equation and Dirichlet and/or Neumann boundary conditions are

analyzed. In addition, an alternative treatment for the Neumann-type boundary condition that improves the

accuracy on a curved boundary is presented along with numerical demonstrations.

Lattice Boltzmann Method, Multiple Relaxation Times,

Convection-diffusion Equation, Anisotropy, Asymptotic Analysis

1. Introduction

The lattice Boltzmann method (LBM)
(1,2)

has

emerged as an alternative numerical method for

solving the Navier–Stokes type equations and has been

extended to various types of flows, for example,

turbulence,
(3,4)

multi-phase systems,
(5,6)

flows of multi-

component fluids,
(7,8)

micro scale flows,
(9,10)

and flows

through porous media.
(11,12)

Attempts have also been

made to use the LBM to solve the convection-diffusion

equation and related equations, such as the pure

diffusion equation and the Poisson equation.
(13-17)

Although there are a vast number of alternative

schemes for these equations associated with the finite

element or finite-difference methods, the LBM is

nevertheless attractive because it is easy to use for

programming and is compatible with parallel

computing. In addition, when we consider the diffusion

phenomena in complex morphology, such as ion

transport in fuel cells
(18,19)

and secondary batteries,
(20)

the LBM is a promising tool in view of the success in

flows through porous media.

Most of the lattice Boltzmann models for the

convection-diffusion equation are commonly limited

to isotropic diffusion. This is because the Bathnagar-

Gross-Krook (BGK) type model, which is the most

commonly used collision model in the LBM, does not

have sufficient parameters to describe anisotropic

diffusion. Since anisotropy of diffusion plays a critical

role in a variety of applications (see, e.g.,

Refs. (21),(22)), removing this limitation is

important. Recently, several groups have developed

lattice Boltzmann models for anisotropic diffusion.
(23-27)

In particular, Ref. (25) two types of models, referred

to as equilibrium- and link-type models, with various

sets of discrete velocities in two and three dimensions

are described. These models can incorporate full

anisotropy with off-diagonal components of the

diffusion-coefficient tensor. However, the simplest

models with five discrete velocities in two dimensions

(D2Q5) and seven discrete velocities in three

dimensions (D3Q7) are limited to the case of diagonal

diffusion-coefficient tensors (DnQm denotes m
discrete velocities in n dimensions).

Recently, an LBM for the CDE, which is based on

the multiple-relaxation-time (MRT) collision operator,

has been proposed.
(28)

Although the method requires

only seven discrete velosities (D3Q7), the number of

tunable parameters is sufficient to cover the anisotropic

diffusion-coefficient tensor. Therefore, the overhead in

memory and CPU time is small compared to that of

other existing methods using larger numbers of

discrete velocities, such as D3Q15 and D3Q19. The

boundary treatment is also simple compared to that for
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other models,
(29-31)

which further facilitates the

implementation of the algorithm. In the present paper,

we overview the lattice Boltzmann method proposed

in Ref. (28) including a detailed numerical procedure.

In engineering applications that involve complex

geometries, the boundaries of the computational

domain are curved.
(18-20)

In such cases, however, the

straightforward application of the simple rule for the

Neumann-type boundary condition mentioned above

fails to capture the correct behavior of the macroscopic

quantities, i.e., the numerical approximation does not

converge to the exact solution no matter how high we

make the grid resolution. This inherent difficulty stems

from the fact that the surface area is overestimated

when the boundary is approximated by the collection

of cube surfaces. We present an alternative treatment

for curved Neumann-type boundaries, which circumvents

this difficulty by introducing the local specific surface

area. The signed distance function handled by the level

set method (see, e.g., Ref. (32)) is used in the present

paper to estimate the local specific surface area. We

demonstrate the improvement by performing a

numerical experiment for a simple problem with a

reactive sphere. The numerical result of the electrical

potential field in a reactive porous medium is also

shown as an example of a practical application.

2. Lattice Boltzmann Method

2. 1  Convection-diffusion Equation

First of all, we specify the partial differential

equation to be solved by using the lattice Boltzmann

method, which is the convection-diffusion equation

(CDE) for the scalor variable ϕ(t,x) on a domain

Ω ⊂ R3
with an initial condition:

· · · · · · · · (1)

· · · · · · · · · · · · · · · · · · · · · (2)

where t ∈ [0,T ] is the time, and x ∈ R3
is the spatial

coordinate. (We either use boldface letters or assign

indexes i, j, and k to designate the vector element in

R3
. We assume the summation convention for repeated

indexes.) The  (anisotropic) diffusion coefficient Dij is

a positive definite symmetric matrix. The background

velocity v(t, x), which is a given function, is assumed
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to be divergence-free. The given functions S(ϕ) and

ψ(x) are the source term and the initial condition,

respectively.

We consider two types of boundary conditions in the

present paper: on the boundary ∂Ωd ⊂ ∂Ω, the Dirichlet

boundary value is specified:

· · · · · · · · · · · · · · · · · · · · · · · · · (3)

and on the boundary ∂Ωn ⊂ ∂Ω, the Neumann-type

boundary condition (the flux-specified condition) is

imposed:

· · · · · · · · · · · · · · · (4)

where n is the unit normal vector on pointing inward

to the domain.

2. 2  Lattice Boltzmann Equation

In the lattice Boltzmann method, the behavior of the

distribution function fα(t, x), where α = 0, 1, 2,..., 6,

is tracked on the basis of the lattice Boltzmann

equation (LBE). The sum of the distribution function

ϕ = Σα fα approximates the solution of the CDE. The

distribution function fα is transported over a regular

spatial lattice with assigned discrete velocities eα (see

Fig. 1):

· · · · · · · · · · · · · · · (5)
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Fig. 1 Seven-velocity model in three dimensions

(D3Q7 model).

.
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We use Greek subscripts to indicate the quantities

corresponding to the directions of the discrete

velocities, as fα above.

The LBE is written in the following form:

· · · · · · · · · · · · · · · (6)

where Δt and Δx are the time step and the grid interval,

respectively. Here, ωα is the weight coefficient defined

in Eq. (10) below. The operator L is referred to as the

collision operator, defines how the fα’s interact during

a time step. In the next subsection, an explicit

expression of the collision operator of the BGK model

is presented, and we later define the MRT collision

operator.

2. 3  BGK Collision Operator

The most widely used collision operator is the BGK

collision operator, which has the following form:

· · · · · · · · · · · · · · · · · (7)

where τ is a coefficient that represents the relaxation

time relative to the time step. In this operator, all the

components of fα relax to the equilibrium with the

single relaxation time. In solving the CDE, is

defined as follows:

· · · · · · · · · · · · (8)

· · · · · · · · · · · · · · · · · · · · · · · · (9)

Here, the weight coefficient ωα is defined as

· · · · · · · · · · · · · · (10)

and the coefficient included in Eq. (8) is Λ = 1/4.

2. 4  Multiple-relaxation-time Collision Operator

The basic idea for the multiple-relaxation-time

(MRT) collision operator is that the relaxation process

is operated on the transformed vector space which is
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referred to as the moment space. (For MRT operators

for flow simulations, see, e.g., Refs.(33)-(35).) More

specifically, the vector fα in the original seven-

dimensional vector space is projected onto the space

in which each component corresponds to a certain

moment of fα. Then, each component relaxes to the

equilibrium with a different relaxation coefficient. The

result of relaxation is projected back onto the original

seven-dimensional space. In contrast to the BGK

model with the single relaxation coefficient, the MRT

model allows us to tune the relaxation coefficient for

each moment separately, and thus we are able to take

anisotropy into account.

The collision operator in Eq. (6) for the MRT

collision operator is defined as follows
(28)

:

· · · · · · · (11)

where the definition of is given by Eq. (8). Here,

M is the matrix that projects a vector onto the moment

space, defined as

· · · · · · · · · · · · · · (12)

The relaxation-time matrix Q is then defined in the

following form:

· · · · · · · · · · · · · · (13)
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L f M QM f feq( ) ( ) ( )α
β

αβ β β= − ,∑ −1

M =

−
−

−
− − − − − −

− − − −

1 1 1 1 1 1 1

0 1 1 0 0 0 0

0 0 0 1 1 0 0

0 0 0 0 0 1 1

6 1 1 1 1 1 1

0 2 2 1 1 1 1

0 00 0 1 1 1 1− −

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

f eq
α

Q

xx xy xz

xy yy yz

xz yz zz
− =1

0

4

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

τ

τ τ τ
τ τ τ
τ τ τ

τ 00

0 0 0 0 0 0

0 0 0 0 0 0

5

6

τ
τ

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

.

.

f eq
α



rotation of the principal axis of anisotropic diffusion.

If we set the values of the coefficients τij as in Eq. (14)

below, the ϕ obtained using the proposed model

approaches the solution to the CDE as Δx → 0, while

maintaining Δt / Δx2 = const.:

· · · · · · · · · · · · · · · · (14)

where δij is the Kronecker delta. The relaxation

coefficient τ0 for the conserved quantity ϕ does not

affect the numerical solution, while the components

τ4, τ5, and τ6, have no effect on the leading-order

approximation of the CDE solution, but they do affect

the error terms.

2. 5  Computational Procedure

In this subsection, the procedure for the

implementation of the LBM is presented. Initialization

and the boundary rules are also described.

(i). Initial distribution: the initial distribution is

expressed in terms of the initial condition ψ(x) = ϕ (0,x)

as follows:

· · · · · · · · · · (15)

If the initial condition ψ(x) includes a gradient, a slight

correction to the above equation is necessary to

maintain accuracy.
(28)

(ii). Collision: the distribution function after the

collision process, denoted by , is given by

· · · · · · · · · · · · · · (16)

(iii). Streaming: the value of is moved in the

direction of eα by the distance Δx:

· · · · · · · · · · (17)

(iv). Dirichlet boundary condition: if the node from

which  the distribution function streams (x – eαΔx) is

outside the domain Ω through ∂Ωd, then the value of

fα(t + Δt, x) is given by the rule

· · · · · · · · · (18)

f e
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Here, and in what follows, the index β indicates the

direction opposite to α, i.e., eα = –eβ.

(v). Neumann-type boundary condition: if the node

from which the distribution function streams (x – eαΔx)

is outside the domain Ω through ∂Ωn, then the

following rule applies:

· · · · · · · (19)

(vi). Macroscopic quantity: the value of ϕ is computed

from Eq. (9) using the updated fα.

(vii). Processes (ii)–(vi) are repeated until t + Δt
reaches T, or a specified convergence condition is

satisfied in steady problems.

3. Asymptotic Analysis

In this section, we briefly describe how the

numerical solution obtained from the LBM is proven

to approximate the solution of the target partial

differential equation, i.e., the CDE. (A more detailed

description is presented in Ref. (28).) The classical

Chapman-Enskog expansion technique is the most

widely used protocol to investigate the convergence of

the LBM (see, e.g., Refs. (1),(16),(25),(36)). Recently,

a similar but essentially different technique referred to

as asymptotic analysis has been proposed by Junk

et al.
(37,38)

Although the former is a powerful tool to

show that the LBE reproduces certain partial

differential equations, the dependence of the numerical

solution on the expansion parameter is not

immediately clear.
(39)

On the other hand, in asymptotic

analysis, the numerical solution itself is expanded in

terms of powers of the small parameter representing

the grid interval, and is analyzed order by order in the

expansion. Therefore, clear information about the

structure of the numerical solution is revealed. We

have performed asymptotic analysis on the lattice

Boltzman algorithm described in the previous section,

and we have found that the leading order term in the

expansion ϕ = ϕ(0) + ϕ(1)ε + ϕ(2)ε2
···, where ε =

Δx / (characteristic length), satisfies the CDE (1).

Furthermore, the analysis of the higher-order terms has

shown that the present model is first- and second-order

accurate in time and space, respectively.
(28)

4. Numerical Examples

In this section, the LBM described in Section 2 is

applied to a few specific problems. In Section 4.1, we

f t t f t t xnα β
( ) � ( )+Δ , = , +Δ / Δ .x x Φ
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verify the applicability of the method to problems with

various types of boundary conditions. We also

investigate the dependence of the error on the

relaxation coefficient. In the second example, the

anisotropic diffusion-coefficient tensors are

considered. In Section 4.3, we consider curved

boundaries on which the flux of ϕ is specified. A

boundary rule to improve accuracy for curved

boundaries, which replaces Eq. (19), is also presented.

4. 1  Helmholtz Equation

First, we consider the Helmholtz equation in the

bounded domain:

· · · · · · · · · · · · (20)

The boundary conditions are

· · · · · · · · · · · · · · (21)

· · · · · · · · · · · · · · (22)

∂
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where . This boundary-value problem

has the following exact solution:

· · · · · · · (24)

We implement the LBM simulation with the initial

condition ϕ = 0 and regard the steady state as the

numerical solution to the above problem. Since, in this

case, the diffusion-coefficient tensor is Dij = δij, the

form of the corresponding relaxation coefficients is

τij = τDδij (see Eq. (14)). The relaxation coefficients that

have no physical significance, i.e., τ0, τ4, τ5, and τ6, can

be set independently of τij = τDδij. Throughout this

section, the value of these coefficients is fixed at unity

(τp = 1 (p = 0,4,5,6)). The accuracy of the numerical

solution is measured by using the error between the

numerical solution ϕnumerical and the exact solution:

.

We show in Fig. 2(a) the log-log plot of E2 versus

the grid interval ε = 1 / N for the case in which κ = π.

The results show second-order accuracy with respect

to the grid interval, as mentioned in the previous

section. (The slope equal to 2 is indicated in the

figure.) The error increases as the value of τD increases.

In order to examine the dependence of the error on τD
in greater detail, we show E2 versus τD for ε = 0.025 in

E N
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1 2
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Fig. 2 (a) E2 versus ε = 1 / N for various values of τD for the case of the Helmholtz equation. The results of

the multiple-relaxation-time (MRT) model are shown. The line indicating a slope of 2 is also shown

in the figure. (b) E2 versus τD for ε = 0.025 for the case of the Helmholtz equation. The results of the

multiple-relaxation-time (MRT) model and the Bathnagar-Gross-Krook (BGK) model are shown.

−

−



Fig. 2(b). For comparison, the results obtained using

the BGK model are also shown in Fig. 2(b). Clearly,

the MRT collsion model suppresses the rate of error

increase.

As demonstrated by this example, the MRT collision

model makes the numerical error less sensitive to the

relaxation coefficient τij = τDδij. This is because

keeping τp(p = 4,5,6) constant moderates the variation

of the higher-order error (ϕ(2)). Therefore, even for an

isotropic diffusion-coefficient, the MRT model is still

beneficial if τD is large. In the example of this

subsection, increasing the value of τD corresponds to

increasing the value of Δt because the relation (14)

holds. Thus, Fig. 2(b) suggests that the computational

time can be reduced using the MRT model with a

larger value of Δt. For instance, if we allow the error

to be comparable to that of the BGK model for τD =

2.5 in Fig. 3, we can enlarge τD up to 8.5, which means

that Δt can be four times as large as that for the BGK

model (see Eq. (14)). The MRT model will also exhibit

this advantage for the case in which the diffusion-

coefficient varies temporally and/or spatially because

τD can be large in such cases owing to the relation (14).

4. 2 Convection and Anisotropic Diffusion of

a Gaussian Hill

Next, we consider the time evolution of a Gaussian

hill under a uniform flow. The x coordinate is taken

along the flow, and the origin of the coordinates is at

the center of the initial Gaussian, i.e., v = (νx,0,0) and

· · · · · · · · (25)

where ϕ0 is the total concentration, and is the initial

variance. The initial-value problem, Eq. (1) without the

source term and Eq. (25), has the following exact

solution:

ϕ
ϕ
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Fig. 3 Convection and diffusion of a Gaussian hill. ϕ0 = 0.01, , νx = 10, and N = 64. The

initial profile of ϕ in the x-z plane at y = 0 is shown in (a), and the corresponding profiles at

t = 0.025 are shown in (b), (c), and (d). The diffusion-coefficient tensor is isotropic in (b),

diagonally anisotropic in (c), and fully anisotropic in (d) (see Eq. (27)).

σ 0

2 0 02= .

−



· · · · · · · · · · · · · · (26)

where is the absolute value of

the determinant of σij, and (σ−1
)ij is the (i, j) component

of the inverse of σij.

In order to test the applicability to anisotropic

diffusion, we consider the following three types of

diffusion-coefficient tensors:

The second type of diffusion-coefficient tensor

possesses diagonal anisotropy, whereas the third type

of diffusion-coefficient tensor has full anisotropy with

off-diagonal components. The third tensor is the

rotation of the second tensor by angle of π / 6 about z
and x axes, in this order. The relaxation coefficients are

related to these diffusion-coefficient tensors via

Eq. (14).

The numerical results for the case of ϕ0 = 0.01,

σ0
2

= 0.02, and νx = 10 are shown in Fig. 3. In the

figure, the profiles of ϕ at t = 0.025 in the x-z plane at

y = 0 are shown, and the initial profile in the same

plane is also shown in Fig. 3(a). Figures 3(c) and (d)

show that the present LBM successfully captures the

convection and anisotropic diffusion process. Since the

profile of ϕ is quite local in this problem, E∞ defined

below is more appropriate for investigating the

accuracy: . We plot E∞

as a function of ε = 1 / N in Fig. 4. The values of the

parameters used here are the same as those in Fig. 3.

The figure confirms that the second-order accuracy of

the present model is not violated by the anisotropy of

the diffusion-coefficient tensor.
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4. 3  Surface Reaction on a Sphere

The final example involves a surface reaction on a

sphere. Here, we consider the cubic domain

. On  the  boundaries  at

x = 0 and x = 2, the concentration is fixed at ϕ = 1 and

ϕ = 0, respectively, and the Neumann-type condition

with no flux is assumed on the rest of the boundaries.

A sphere with radius R is located at the center of the

domain. The surface reaction takes place on the sphere

boundary . The

concentration flux is given by

· · · · · · · · · · · · · (28)

where n is the unit normal vector pointing inward to

the domain, and D is the diffusion coefficient, which

is assumed to be isotropic in this example. Neither

convection nor bulk reaction are considered here, i.e.,

v = 0 and S = 0.

Let us denote by ΔJ the difference between the total

fluxes flowing through the two fixed-concentration

boundaries. The conservation law implies that in the

steady state Δ J is equal to the total flux from the

sphere: . We use this relation for

validation of the model. If we straightforwardly apply

the procedure described in Section 2.5 to the present

problem, the conservation law described above is not

Ω = | ∈ , ; , ∈ − ,{ [ ] [ ]}x x y z0 2 1 1

∂ = | − + + =Ωs x y z R{ ( ) }x 1 2 2 2 2

− ∂
∂

= , ∈∂ ,n D
x

Jj
j

n s
ϕ

x Ω

Δ =J R Jn4 2π

75

© Toyota Central R&D Labs., Inc. 2012 http://www.tytlabs.co.jp/review/

R&D Review of Toyota CRDL, Vol.43 No.4 (2012) 69-79

Fig. 4 E∞ evaluated at t = 0.025 versus ε = 1 / N for the

case of convection and diffusion of a Gaussian hill.

The results for the cases of isotropic ( ),

diagonally anisotropic (■), and fully anisotropic (●)

diffusion-coefficient tensors are shown. The line

indicating a slope of 2 is also shown in the figure.

See the caption of Fig. 3 for the other parameters.

· ·  · · · ·· (27)

−

−



satisfied accurately, as shown in Fig. 5. The symbol ■

indicates the results obtained using the rule in Eq. (19).

The solid line indicates the analytical expression, i.e.,

. The disagreement arises from the fact

that the surface area on which the reaction occurs is

overestimated. More specifically, the surface of the

sphere is approximated by the set of the cube surfaces

with side length Δx when Eq. (19) is used. No matter

how small we make Δx, the approximated area does

not converge to the exact value. To avoid this difficulty,

we use an alternative treatment for curved boundaries,

as described below.

In the modified treatment, procedure (v) in

Section 2.5 is replaced by

• If x − eαΔx is outside the cell boundary that

envelopes  the  domain  Ω (the  thick  line  in

Fig. 6(a)), then the rule in Eq. (19) with Φn = 0 (the

bounce-back rule) is applied. (The cell of a lattice

point refers to the cube box with side length Δx,

the center of which is located at the lattice point.)

Subsequently, on the lattice points of cells that

intersects the boundary (○ in Fig. 6(a)), Δfα defined

below is further added to fα :

, · · · · (29)

where A = Ac / Δx2
, with Ac being the area of the

intersection between the cell and the boundary. The

summation is taken over γ such that eγ · n > 0.

In the actual implementation of the above procedure,

we clearly need to prepare the normal n and the local

specific surface area A assigned to each lattice point

Δ
Φ Δ
Δf

A t
x
n

α

α

γ γ
α=

⋅
∑ ⋅

⋅ >⎧
⎨
⎪

⎩⎪

( )
,

,

e n

e n
e nif 

otherwise

0

0

Δ =J R Jn4 2π

around the boundary. The signed distance function φ(x)

handled by the level set method
(32)

can be used for

preparation of n and A. The value of φ indicates the

distance from the boundary (φ = 0 for x ∈ ∂Ω), and the

sign corresponds to the phase. We can obtain the value

of φ, immediately if the boundary is expressed in an

analytical form. On the other hand, if a set of binary

voxel data approximating the shape of Ω is given, φ is

obtained by applying an appropriate re-distancing

procedure using the voxel data as the initial condition

(see, e.g., Refs. (32),(40)). The normal n is obtained

by taking the gradient of φ, and the area Ac is

approximated by the area of the intersection between

the cell and the plane normal to n displaced by the
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Fig. 5 Reaction flux from the sphere. ΔJ versus R for

D = 1 and Jn = 0.5. The symbol ■ indicates the

results obtained using the normal boundary rule

(19), and ● indicates the results obtained using the

modified boundary rule described in Section 4.3.

The solid line indicates the analytical expression.

Fig. 6 (a) A two-dimensional schematic diagram of the lattice points around the curved boundary. The

solid grid lines indicate the cell boundary, and the thick line indicates the cell boundary enveloping

Ω. The black circle ● depicts the normal lattice points, and the white circle ○ depicts the lattice

points of the cell that intersects the boundary ∂Ω. (b) Approximated intersection in a cell.

−



distance | φ | from the lattice point (see Fig. 6(b)). For

other methods of estimating n and A, see, e.g., Ref. (41).

In Fig. 5, the ΔJ obtained using the modified rule is

also plotted with ●, and exhibits excellent agreement

with the exact values. The profile of ϕ and the vector

field of (Jx,Jz) in the x-z plane at y = 0.0125 in the case

of R = 0.5 are shown in Fig. 7. For comparison, the

corresponding figure obtained using the finite element

method (FEM) is also shown. Although satisfactory

agreement is achieved, there is a very slight

discrepancy of the vectors near the sphere surface. This

is because the flux tangential to the boundary surface

is exposed to an unphysical restriction due to the

bounce-back rule, unless the boundary is parallel to a

symmetric axis of the lattice (cf. Ref. (30)). Further

modification of the boundary rule to release this

restriction, like the attempt made in Ref. (30), may

improve the accuracy. Nevertheless, the overall

agreement observed in Fig. 7 shows that the rule

presented here is sufficient for practical applications.

We have applied the present method to various types

of engineering problems such as lithium-ion

batteries.
(42,43)

One example is shown in Fig. 8, which

is a result of the analysis of the potential field in a

reactive porous medium. The governing equation is the

same as the case of the single-sphere problem.

Although the previous example with a single sphere is

simple enough to use the body-fitted mesh in the FEM

analysis, it is difficult to establish appropriate mesh

systems for the random configuration as shown in

Fig. 8. There is still more tough work if the number of

simulation cases is large. On the other hand, the LBM

supported by the boundary treatment described in this

section is straightforwardly applied regardless of the

complexity of the boundary.

5. Summary

In the present paper, a lattice Boltzmann method for

the CDE has been described. The method is a

straightforward extension of the classical BGK

collision operator to the MRT collision operator.

Anisotropy of diffusion, which is not covered by the

BGK, is correctly incorporated through the relaxation-

time matrix in the MRT collision operator. It was

shown analytically and numerically that the lattice

Boltzmann algorithm presented in Section 2.5 was

second-order accurate with respect to the grid interval.

The ordinary boundary rule for the Neumann-type

(specified flux) condition is not sufficiently accurate

when the boundary is curved. In order to widen the

applicability of the LBM, an improved boundary rule

for curved boundaries was developed (Section 4.3).

This boundary rule is particularly useful for practical

applications that involve complex geometries, such as

a random porous structure, because the existing
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Fig. 7 Profiles of ϕ and vector fields of (Jx, Jz) in the x-z plane at y = 0.0125. D = 1, Jn = 0.5, and

R = 0.5. (a) Present lattice Boltzmann method (LBM). (b) Finite element method (FEM).

Fig. 8 Potential field in a porous medium. Boundary

conditions are as follows: Eq. (28) at the porous

surfaces, no-flux condition at x = 0, ϕ = 0 at x = 2,

and periodic condition in the y and z directions.

−



schemes other than the LBM are not easily applied to

such problems. Combined with the improved boundary

rule, the LBM reviewed in the present paper is a

promising tool for analyzing transport process in

complex mesoscopic systems, such as catalysts, fuel

cells, and secondary batteries.

References

(1)   Chen, S. and Doolen, G. D., “Lattice Boltzmann

Method for Fluid Flows”, Annu. Rev. Fluid Mech.,
Vol. 30 (1998), pp. 329-364. 

(2)   Succi, S., The Lattice Boltzmann Equation for Fluid
Dynamics and Beyond (2001), Oxford Univ. Press

(3)   Lätt, J., Chopard, B., Succi, S. and Toschi, F.,

“Numerical Analysis of the Averaged Flow Field in a

Turbulent Lattice Boltzmann Simulation”, Physica A,

Vol. 362 (2006), pp. 6-10. 

(4)   Yu, H., Luo, L.-S. and Girimaji, S. S., “LES of

Turbulent Square Jet Flow Using an MRT Lattice

Boltzmann Model”, Comput. Fluids , Vol. 35 (2006),

pp. 957-965. 

(5)   Inamuro, T., Ogata, T., Tajima, S. and Konishi, N.,

       “A Lattice Boltzmann Method for Incompressible

Two-phase Flow with Large Density Differences”,

       J. Comput. Phys., Vol. 198 (2004), pp. 628-644.

(6)   Zheng, H. W., Shu, C. and Chew, Y. T., “A Lattice

Boltzmann Model for Multiphase Flows with Large

Density Ratio”, J. Comput. Phys., Vol. 218 (2006),

pp. 353-371. 

(7)   Luo, L. -S. and Girimaji, S. S., “Theory of the Lattice

Boltzmann Method: Two-fluid Model for Binary

Mixtures”, Phys. Rev. E, Vol. 67 (2003), 036302.

(8)   Asinari, P., “Asymptotic Analysis of Multiple-

relaxation-time Lattice Boltzmann Schemes for

Mixture Modeling”, Comput. Math. Appl., Vol. 55

(2008), pp. 1392-1407. 

(9)   Guo, Z., Zhao, T. S. and Shi, Y., “Physical Symmetry,

Spatial Accuracy, and Relaxation Time of the Lattice

Boltzmann Equation for Microgas Flows”, J. Appl.
Phys., Vol. 99 (2006), 074903.

(10) Niu, X. -D., Hyodo, S., Munekata, T. and Suga, K.,

“Kinetic Lattice Boltzmann Method for Microscale

Gas Flows: Issues on Boundary Condition,

Relaxation Time, and Regularization”, Phys. Rev. E,

Vol. 76 (2007), 036711. 

(11)  Guo, Z. and Zhao, T. S., “Lattice Boltzmann Model

for Incompressible Flows through Porous Media”,

Phys. Rev. E, Vol. 66 (2002), 036304.

(12) Kang, Q., Lichtner, P. C. and Zhang, D., “An Improved

Lattice Boltzmann Model for Multicomponent

Reactive Transport in Porous Media at the Pore

Scale”, Water Resour. Res., Vol. 43 (2007), W12S14.

(13) FlekkØy, E. G., “Lattice Bhatnagar-Gross-Krook

Models for Miscible Fluids”, Phys. Rev. E, Vol. 47

(1993), pp. 4247-4257.

(14) Wolf-Gladrow, D., “A Lattice Boltzmann Equation

for Diffusion”, J. Stat. Phys., Vol. 79 (1995),

       pp. 1023-1032. 

(15) Stockman, H. W., Glass, R. J., Cooper, C. and

Rajaram, H., “Accuracy and Computational

Efficiency in 3D Dispersion via Lattice-Boltzmann:

Models for Dispersion in Rough Fractures and

Double-diffusive Fingering”, Int. J. Mod. Phys. C,

Vol. 9 (1998), pp. 1545-1557. 

(16) Shi, B. C., Deng, B., Du, R. and Chen, X. W.,

       “A New Scheme for Source Term in LBGK Model

for Convection-diffusion Equation”, Comput. Math.
Appl., Vol. 55 (2008), pp. 1568-1575. 

(17) Shi, B. C. and Guo, Z., “Lattice Boltzmann Model for

Nonlinear Convection-diffusion Equations”,

       Phys. Rev. E , Vol. 79 (2009), 016701. 

(18) Asinari, P., Quaglia, M. C., von Spakovsky, M. R.

and Kasula, B. V., “Direct Numerical Calculation of

the Kinematic Tortuosity of Reactive Mixture Flow in

the Anode Layer of Solid Oxide Fuel Cells by the

Lattice Boltzmann Method”, J. Power Sources,

       Vol. 170 (2007), pp. 359-375.

(19) Suzue, Y., Shikazono, N. and Kasagi, N.,

       “Micro Modeling of Solid Oxide Fuel Cell Anode

Based on Stochastic Reconstruction”, J. Power
Sources, Vol. 184 (2008), pp. 52-59.

(20) Wang, C. -W. and Sastry, A. M., “Mesoscale

Modeling of a Li-Ion Polymer Cell”, J. Electrochem.
Soc., Vol. 154 (2007), pp. A1035-A1047.

(21) Link, S., Chang, W. -S., Yethiraj, A. and Barbara,

P. F., “Anisotropic Diffusion of Elongated and

Aligned Polymer Chains in a Nematic Solvent”, J.
Phys. Chem. B, Vol. 110 (2006), pp. 19799-19803.

(22) Johnson, P. M., Faez, S. and Lagendijk, A.,

       “Full Characterization of Anisotropic Diffuse Light”,

Opt. Express, Vol. 16 (2008), pp. 7435-7446. 

(23) Zhang, X., Bengough, A. G., Crawford, J. W. and

Young, I. M., “A Lattice BGK Model for Advection

and Anisotropic Dispersion Equation”, Adv. Water
Resour., Vol. 25 (2002), pp. 1-8.

(24) Zhang, X., Bengough, A. G., Deeks, L. K., Crawford,

J. W. and Young, I. M. “A Novel Three-dimensional

Lattice Boltzmann Model for Solute Transport in

Variably Saturated Porous Media”, Water Resour.

Res., Vol. 38 (2002), pp. 1167-1177. 

(25) Ginzburg, I., “Equilibrium-type and Link-type

Lattice Boltzmann Models for Generic Advection and

Anisotropic-dispersion Equation”, Adv. Water
Resour., Vol. 28 (2005), pp. 1171-1195.

(26) Rasin, I., Succi, S. and Miller, W.,

       “A Multi-relaxation Lattice Kinetic Method for

Passive Scalar Diffusion”, J. Comput. Phys., Vol. 206

(2005), pp. 453-462.

(27) Suga, S., “Stability and Accuracy of Lattice

Boltzmann Schemes for Anisotropic Advection-

diffusion Equations”, Int. J. Mod. Phys. C, Vol. 20

(2009), pp. 633-650.

(28) Yoshida, H. and Nagaoka, M., “Multiple-relaxation-

time Lattice Boltzmann Model for the Convection

78

© Toyota Central R&D Labs., Inc. 2012 http://www.tytlabs.co.jp/review/

R&D Review of Toyota CRDL, Vol.43 No.4 (2012) 69-79



and Anisotropic Diffusion Equation”, J. Comput.
Phys., Vol. 229 (2010), pp. 7774-7795.

(29) He, X., Li, N. and Goldstein, B., “Lattice Boltzmann

Simulation of Diffusion-convection Systems with

Surface Chemical Reaction”, Mol. Simulat., Vol. 25

(2000), pp. 145-156.

(30) Ginzburg, I., “Generic Boundary Conditions for

Lattice Boltzmann Models and their Application to

Advection and Anisotropic Dispersion Equations”,

Adv. Water Resour., Vol. 28 (2005), pp. 1196-1216. 

(31) Akinaga, Y., Hyodo, S. and Ikeshoji, T., “Lattice

Boltzmann Simulations for Proton Transport in 2-D

Model Channels of Nafion”, Phys. Chem. Chem.
Phys., Vol. 10 (2008), pp. 5678-5688.

(32) Osher, S. and Fedkiw, R., Level Set Methods and
Dynamic Implicit Surfaces (2003), Springer.

(33) Lallemand, P. and Luo, L. -S., “Theory of the Lattice

Boltzmann Method: Dispersion, Dissipation,

Isotropy, Galilean Invariance, and Stability”,

       Phys. Rev. E, Vol. 61 (2000), pp. 6546-6562.

(34) d'Humières, D., Ginzburg, I., Krafczyk, M.,

Lallemand, P. and Luo, L. -S., “Multiple-relaxation-

time Lattice Boltzmann Models in Three

Dimensions”, Philos. Trans. R. Soc. Lond. A,

       Vol. 360 (2002), pp. 437-451.

(35) Guo, Z., Zheng, C. and Shi, B. C., “Lattice

Boltzmann Equation with Multiple Effective

Relaxation Times for Gaseous Microscale Flow”,

Phys. Rev. E, Vol. 77 (2008), 036707.

(36) Dawson, S. P., Chen, S. and Doolen, G. D.,

       “Lattice Boltzmann Computations for Reaction-

diffusion Equations”, J. Chem. Phys., Vol. 98 (1993),

pp. 1514-1523.

(37) Junk, M., Klar, A. and Luo, L. -S., “Asymptotic

Analysis of the Lattice Boltzmann Equation”,

       J. Comput. Phys., Vol. 210 (2005), pp. 676-704.

(38) Junk, M. and Yang, Z., “Asymptotic Analysis of

Lattice Boltzmann Boundary Conditions”, J. Stat.
Phys., Vol. 121 (2005), pp. 3-35.

(39) Caiazzo, A., Junk, M. and Rheinländer, M.,

“Comparison of Analysis Techniques for the Lattice

Boltzmann Method”, Comput. Math. Appl., Vol. 58

(2009), pp. 883-897.

(40) Sussman, M., Fatemi, E., Smereka, P. and Osher, S.,

“An Improved Level Set Method for Incompressible

Two-phase Flows”, Comput. Fluids, Vol. 27 (1998),

pp. 663-680.

(41) Flin, F., Brzoska, J. B., Coeurjolly, D., Pieritz, R. A.,

Lesaffre, B., Coléou, C., Lamboley, P., Teytaud, O.,

Vignoles, G. L. and Delesse, J. F., “Adaptive

Estimation of Normals and Surface Area for Discrete

3-D Objects: Application to Snow Binary Data from

X-ray Tomography”, IEEE Trans. Image Process.,
       Vol. 14 (2005), pp. 585-596.

(42) Yoshida, H. and Nagaoka, M., “Multiple-relaxation-

time Lattice Boltzmann Model for the Convection

and Diffusion Equation and Its Applications”,

Abstracts of the 8th International Conference for

Mesoscopic Methods in Engineering and Science
(2011), p. 18., National Institute of Applied Sciences.

(43) Yoshida, H., Baba, N., Nagaoka, M., Kawauchi, S.

and Itou, Y., “Numerical Analysis of Ion Transport in

Electrodes of Lithium Ion Secondary Batteries by

Means of the Lattice Boltzmann Method”,

Proceedings of the 51st Battery Symposium in Japan
(in Japanese), (2010), p. 80., The Electrochemical

Society of Japan.

Figs. 2 - 7

Text

p.69 left l.1 - right l.17

p.70 left l.5 - l.24

p.73 left l.10 - right l.10

p.74 left l.5 - p.76 left l.27

p.77 left l.3 - l.20

Reprinted from J. Comput. Phys., Vol. 229 (2010),

pp. 7774-7795, Yoshida, H. and Nagaoka, M., Multiple-

relaxation-time Lattice Boltzmann Model for the

Convection and Anisotropic Diffusion Equation, © 2010

Elsevier, with permission from Elsevier.

79

© Toyota Central R&D Labs., Inc. 2012 http://www.tytlabs.co.jp/review/

R&D Review of Toyota CRDL, Vol.43 No.4 (2012) 69-79

Hiroaki Yoshida

Research Fields: 

- Computational Fluid Dynamics

- Electrokinetic Flows

- Modeling and Simulation of

Electrochemical Processes

- Multi-scale Simulation of Suspensions

Academic Degree: Dr.Eng.

Academic Societies: 

- The Japan Society of Mechanical Engineers

- The Japan Society of Fluid Mechanics

Award: 

- Certificate of Merit for Best Technological

Presentation, The Japan Society of Mechanical

Engineers, Computational Mechanics Division, 2011

Makoto Nagaoka

Research Fields: 

- Computational Fluid Dynamics

- Internal Combustion Engine

- CAE

- Modeling-Simulation-Optimization Process

Development

Academic Degree: Dr.Eng.

Academic Societies: 

- Society of Automotive Engineers of Japan

- The Japan Society of Mechanical Engineers

- Institute for Liquid Atomization and Spray Systems-

Japan

Awards: 

- Paper Award, Japan Society of Automotive 

Engineers, 1992

- SAE Arch T. Colwell Merit Award, 1996

- Incentive Award, Japan Society of Mechanical

Engineers, 1997


