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The extraction of a weak signal in a noisy environment is realized by observing signal-

induced modulations. Hence, the investigation of the response to a weak perturbation plays an important

role in signal processing research. The response of the system is enlarged by the combination of nonlinearity

and an external driving force. The response is generally analyzed by a hybrid of a linear response theory

and renormalization theory. In the present paper, we investigate two types of systems: an overdamped system

driven by a high-frequency external force, the response of which is simply described in the framework of

linear response theory, and an overdamped system with random telegraph noise, the response of which

requires a renormalization approach for analysis. We demonstrate that the enhancement of the responses in

these systems originates from the bifurcation phenomena.
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Vibrational Resonance, Stochastic Resonance

1. Introduction

In signal processing problems, such as signal

detection and signal estimation, the basic idea in

extracting a weak signal from a noisy environment is

to identify the signal-induced modulation in the

received input.
(1-4)

The weak signal is detected or

estimated only by observing the modulation induced

by the weak signal. Therefore, enhancement of the

signal-induced modulation is considered to improve

the signal processing performance. In information

theory, one of the methods by which to identify signal-

induced modulation is realized in the sense of

probability, i.e., Bayesian estimation.
(5-7)

Another effort

by which to enhance signal-induced modulation is to

improve the signal-to-noise ratio (SNR),
(8-11)

which is

more intuitive and easier than Bayesian estimation. It

has been reported that the SNR improves when

nonlinearity is exploited.
(12-20)

Therefore, the

exploitation of nonlinearity is considered in the

presence of noise, while conventional signal

processing devices in a noiseless environment are

assumed to be linear. Since the enhancement of a weak

signal by nonlinearity is translated into a large response

to a small perturbation, the response of the system is

important in the field of signal processing.

The basic tool for investigating the response to a

weak perturbation is linear response theory.
(21-23)

However, in the conventional linear response theory,

the magnitude of the response is assumed to be on the

order of the weak perturbation. Therefore, a singular

response that differs in order of magnitude from a

weak perturbation cannot be analyzed in the

framework of the conventional linear response theory.

In this case, renormalization theory
(24-26)

becomes

useful for understanding the true behaviors of the

system. The method of renormalization bridges the

true behaviors of singular response and the naïve

theory of linear response.

In the present paper, we investigate the response to

a weak perturbation in two types of systems: a system

that exhibits a simple linear response and a system that

exhibits a singular response. In the next section, we

consider the deterministic nonlinear system subjected

to a high-frequency driving force. The high-frequency

driving force is considered to be the deterministic

version of noise. This system is a minimal model, the

response of which can be analyzed in the framework

of the conventional linear response theory.
(17-20, 27)

In

Section 3, we consider a stochastic system subjected

to random telegraph noise.
(28-30)

Random telegraph

noise is two-valued white noise. Owing to this

discreteness, the response cannot be understood in the

framework of the conventional linear response theory.

The response is obtained by coarse-graining of the

system states,
(31)

which is one of major techniques in

renormalization theory. Both of the two systems

exhibit enhancement of a weak perturbation. The
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origin of such enhancement is the combination of

nonlinearity and driving force. The driving forces are

the high-frequency deterministic forces and telegraph

noise in Sections 2 and 3, respectively. These systems

exhibit bifurcation when the amplitude of the driving

force is tuned. The enhancement of the system

response is strongly related to bifurcation phenomena. 

2. Linear Response: System with Deterministic

High-frequency Driving Force

In order to understand the relationship between

system response and bifurcation in the linear response

regime, we investigate the overdamped deterministic

dynamics in this section. We consider the dynamics

with external high-frequency driving force
(17-20,27)

given as

, · · · · · · · (1)

where U(x) is a potential, f(t) denotes the external force

of order unity, the frequency of which is much higher

than the inverse of the relaxation time of the system.

The small perturbation εs(t)(|ε| <<1) and the system

state x are regarded as a weak input and output signals,

respectively. We assume that εs(t) is a low-frequency

input, and the corresponding period is much longer

than the relaxation time of the system.

The response to a weak perturbation of the system

Eq. (1) is understood in the framework of linear

response theory. The solution of Eq. (1) is

approximately given as

, · · · · (2)

where x0 is the unperturbed solution satisfying

dx0/dt = –dU(x)/dx + f(t), ti is the initial time to switch

on the perturbation, and χ(t1,t2) denotes the linear

response function given as

. · · · · · · · · (3)

Here, we use the notation U"(x) = d
2U(x)/dx2

. Note that

the system response is completely governed by the

unperturbed solution in the linear response regime.

Since the unperturbed dynamics includes the high-
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frequency external force and the perturbation is

assumed to be low-frequency, the system response is

averaged over the time scale of the system relaxation.

Correspondingly, after a sufficiently long time, i.e.,

ti → – ∞, the response function is asymptotically

given as

, · · · · · · · · · · · · · (4)

for t1 – t2 > 0. The exponent κ is given by the time

average of U" as

. · · · · · · · · · · · · · (5)

The asymptotic expression of the response function

Eq. (4) is reproduced from the argument on the time

scale of the solution for Eq. (1). Since the weak

perturbation is assumed to be slow, the effective

dynamics for x1 = (x – x0)/ε is given by reducing the

fast oscillation in Eq. (1) as

. · · · · · · · · · · · · · · · · · (6)

Through the derivation of Eq. (6), κ is found to be

given as κ = U"eff (xst), where the effective potential

Ueff (x) is the time average of the potential U(x) with

respect to the fast oscillation, and xst is the stationary

solution of the effective dynamics, i.e., U'eff (xst) = 0.

For U(x) = x4
/4 – x2

/2 and f(t) = A cos ωt as an example,

the effective potential is given as Ueff (x) = x4
/4 – αx2

/2,

where α = 1 – 3A2
/2ω2

. Note that the stationary

solution xst exhibits a pitchfork bifurcation when A/ω
changes. As shown in the following argument, the

bifurcation of the effective slow dynamics is the key

to understanding the response in the linear response

regime.

Consider a weak sinusoidal perturbation εs(t) = εcosω s t.
Substituting this into Eq. (6) in a straightforward

manner yields

, · · · · · · · · · · · · · · · · (7)

where

,· · · · · · · · · · · · · · · · · · · · (8)
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and ϕ = arctan(ωs /κ). Since κ is given as κ = U"eff (xst)

and the bifurcation of the solution for U'eff (xst) = 0

means U"eff (xst) = 0 , the amplitude of the perturbed

solution x1 reaches a maximum at the bifurcation point.

Figure 1 shows the amplitude Q as a function of A/ω
for the bistable potential U(x) = x4

/4 – x2
/2. The inset

depicts the distance from the bifurcation point |α|. As

shown in Fig. 1, the amplitude of the perturbed

solution has a peak when the amplitude of the

additional high-frequency driving force changes. This

phenomenon is called vibrational resonance.
(17)

From

our analysis, it is clear that this phenomenon is the

result of two external forces of different time scales

and the nonlinearity of the system.
(27)

3. Nonlinear Response: System with Random

Telegraph Noise

In this section, we investigate a system subjected to

random telegraph noise. In such a system, the system

can exhibit singular behaviors owing to the

discreteness of the noise.
(28-30)

The singularities in the

system state distribution can yield a nonlinear response

to a weak perturbation.
(31)

Therefore, a weak input

signal, which is a perturbation to the system, can be

significantly enhanced.

3. 1  Stationary Properties

We consider an overdamped system subjected to

random telegraph noise
(31)

given as

, · · · · · · · · · · · · · · (9)d d d dx t U x x/ ( ) /= − +η

where U denotes a potential. The random telegraph

noise η takes two values, ±H. The noise switches as

+H → –H at switching rate ν+– and –H → +H at ν–+.

The system state x is regarded as the output from the

nonlinear device having a potential of U(x). The

stationary probability density of the system state x is

obtained by solving the master equation corresponding

to the stochastic dynamics Eq. (9). Using the average

stationary  state  given  by  the  effective  potential

as                      with

and ν = ν+–+ ν–+, the stationary density is

expressed as

,
· · (10)

where  and

.· · · · (11)

The stationary distribution Eq. (10) has a much

richer structure than the Boltzmann density. The

density has singularities at x* satisfying U' 2
(x*) = H2

.

The number of singularities depends on the potential

form and the amplitude of the random telegraph noise. 

The stationary densities for three cases are illustrated

in Fig. 2. Panel (a) shows the asymmetric potential

U(x) = x2
/2 – x3

/3. For this potential, three types of

stationary  probability  density  can  be  observed  if

H < 1/4. If the amplitude of the telegraph noise exceeds

1/4, the system state starting from x = 0 can exceed the

potential barrier and become diffuse. For the

probability densities illustrated in panels (b) through

(d), the initial condition of the system state is chosen

as δ(x), and the amplitude of telegraph noise is set to

be H = 3/16. The switching rates of telegraph noise

(ν+–,ν–+) are set to be , , and (1,1),

corresponding to panels (b) through (d). Panel (b)

shows the density with compact support. For this

switching rate, no divergence appears in the stationary

density. Panel (c) shows the stationary density with

divergences on the both sides of the boundary, and

panel (d) shows the density with divergence on one

side of the boundary.

In addition to the stationary probability density,

another important stationary property is the stationary

probability current. In a bistable potential system, the

ρ
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Fig. 1 Amplitude of the output as a function of input

amplitude divided by the input frequency. The inset

shows the distance from the bifurcation point.
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noise-induced transition from one metastable state to

the other can significantly affect the system response.

The stationary probability current near the saddle point

of the potential gives the escape rate from a metastable

state. The escape rate is obtained by the analogy of

Kramers’ argument as

,

· · · · · · · · · · · · · · (12)

where           is the saddle point of the effective potential

with                       . The states      and

are modulated by the external perturbation, and

their changes induce the exponential modulation in the

ν
πesc

saddle st

addle st=
′′ ′′

−[ ]U x U x
x xs

( ) ( )
exp ( , )

/ 
 

1 2

2
Φ

escape rate Eq. (12). Therefore, the system can exhibit

a singular response, which is the primary goal. A

schematic diagram of the potential landscape is shown

in Fig. 3.

In Fig. 4, we compare the results of the analytical

calculation for the escape rate with numerical

simulations. The potential is taken as U(x) = x4
/4 – x2

/2.

Good agreement is achieved for moderately large ν/H 2
.

For comparison, we show the results for thermal

activation with effective temperature kBTeff = H 2
/ν

given by the conventional Kramers’ theory.
(32)

In order

to ensure the validity of this comparison, symmetric

telegraph noise ν+– = ν–+ has been used. The amplitude

of telegraph noise is set to be H = 0.5. Figure 4 shows

that the exponent of the escape rate for telegraph

noise-driven system is clearly different from the

Gaussian noise-driven (thermally activated) system.
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3. 2  Response to Weak Periodic Perturbation

The response of the system Eq. (9) to a weak

periodic perturbation is described by a hybrid use of

linear and singular response functions. Consider that

the system is governed by a metastable potential. In

this case, the modulation of the system state can be

decomposed into two parts. One is the intrawell

modulation, which is small and thus described by the

conventional linear response theory, and the other is

the interwell modulation that yields the singular

response. 

The linear response is described by the conventional

response function

.· · · · · · · · · · · · · · · (13)

The solution for the perturbed system

, · · · · · · (14)

is modulated as

, · · · · · · (15)

where δx(t) is the difference between the solutions for

the perturbed dynamics Eq. (14) and the unperturbed

dynamics Eq. (9), δx(t) = y(t) – x(t). The notation 

denotes the expectation value. 

The singular response is given by the modulation in

the escape rate Eq. (12). Since the escape rate is

modulated by the periodic perturbation, the rates of the

interwell transitions change periodically. Such

transition rates are given as

, · · · · · · · · · · · (16)

where Rnm denotes the transition rate from well n to

well m, rnm is the unperturbed rate of escape from well

n given as

,

· · · · · · · · · · · · · · (17)
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π
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and φn is expressed using a functional derivative as

.· · · · · · · · · · · (18)

Here, denotes the metastable state in well n. The

interwell transition rate Rnm governs the population in

each well Pn. The temporal change of the population

is well described by the population dynamics as

, · · · · · · (19)

with normalization condition Σn Pn = 1. The population

dynamics Eq. (19) with the interwell transition rate

Eq. (16) yields the periodic modulation in the

population. Since the interwell interval is significantly

larger than the amplitude of the perturbation A, the

interwell transition yields the singular response to a

weak perturbation. 

The intrawell modulation around each local

minimum of the effective potential is given by

Eq. (15). The  population  of  each  local  minimum

is given by Pn. Therefore, the response to a weak

periodic perturbation is given by the hybrid use of

intrawell and interwell responses as

,

· · · · · · · · · · · · · · (20)

where .

For the bistable potential system U(x) = x4
/4 – x2

/2,

the exponent of the escape rate                   can be

written as                                     . The function S(H) is

plotted  in  Fig. 5.  The  function  S(H)  diverges  for

H → 2/3
3/2

≈ 0.385. This means that the singular

response becomes relevant when the amplitude of

random telegraph noise is set to be near H = 2/3
3/2

.

Such a nonmonotonic change in the magnitude of the

system response with the monotonic change of noise

amplitude is known as stochastic resonance.
(12,13)

The

most commonly investigated stochastic  resonance  is

induced  by  Gaussian noise.
(12-16)

For Gaussian noise,

the response is not singular. Systems with telegraph

noise can exhibit an unconventional stochastic

resonance, which yields a strongly singular

response.
(33,34)
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Note that the stationary density Eq. (10) bifurcates
(35)

at H = 2/3
3/2

as the amplitude of the telegraph noise

changes. For H < 2/3
3/2

, the stationary density is

trapped in a potential well, and the state cannot exceed

the potential barrier. For H > 2/3
3/2

, on the other hand,

the stationary density spreads over all potential wells.

Therefore, the enhancement of the system response

again originates from the bifurcation, as well as the

deterministic system investigated in Section 2.

Figure 6 shows the response to a weak periodic

perturbation Acosωs t in a bistable potential system

U(x) = x4
/4 – x2

/2. The switching rate of telegraph

noise is symmetric as ν+– = ν–+ = 1.0. Since the

unperturbed solution gives is plotted

in order to show the response of the system. The

amplitude of random telegraph noise is taken as

H = 0.384, which is close to the critical value, i.e.,

H = 2/3
3/2

. The parameters for the perturbation are

taken as A = 0.1 and ωs = 10
–3

. In Fig. 6, the theoretical

result Eq. (20) (solid line) is compared with the

numerical simulation result (broken line). The strong

square-wave-like form of       originates from the

relevance of the interwell transition. 

( ) 0, ( )x t y t〈 〉 =  〈 〉

4. Conclusion

In this paper, we have investigated the response to a

weak perturbation in nonlinear systems. It has been

demonstrated that the response is enlarged owing to

the bifurcation induced by tuning the amplitude of the

external driving force in nonlinear systems. Using such

systems as devices for signal processing, a large SNR

can be obtained. In a stochastic system, however, the

large SNR does not ensure accurate signal estimation

in a deterministic sense. The signal estimation should

be carried out in a statistical sense: a number of

samples of received input are required. The large SNR

requires fewer samples in order to obtain a statistically

relevant estimation. Therefore, systems exhibiting

large SNRs can be exploited as devices with short

signal processing times.

Most conventional signal processing devices are

linear. The nonlinearity of the device is avoided in

designing devices. However, as demonstrated herein,

the significant enhancement of a weak signal is

relevant in nonlinear systems. In particular, the

nonlinear response shown in Section 3 cannot appear

in linear systems. Therefore, the nonlinearity is

attractive in the field of signal processing. This

conclusion suggests a device design approach opposite

that of the currently accepted approach. The analysis

presented herein will be key in designing signal

processing devices in the future.

References

(1)   Kay, M. S., Fundamentals of Statistical Signal
Processing, Volume I: Estimation Theory (1993),

Prentice Hall.

(2)   Kay, M. S., Fundamentals of Statistical Signal
Processing, Volume II: Detection Theory (1993),

Prentice Hall.

(3)   Perotti, L., Vrinceanu, D. and Bessis, D., arXiv:

1009.6021, <arxiv.org/pdf/1009.6021> (accessed

2012-11-08).

(4)   Perotti, L., Vrinceanu, D. and Bessis, D., IEEE Signal
Process. Lett., Vol. 19, No. 12 (2012), pp. 865-867.

(5)   Gelb, A., Applied Optimal Estimation (1974), 

       The MIT Press.

(6)   Cover, T. M. and Thomas, J. A., Elements of
Information Theory (2006), Wiley-Interscience.

(7)   Nishimori, H., Statistical Physics of Spin Glasses and
Information Processing (2001), Oxford University

Press.

(8)   Proakis, A. D., Digital Communications (1989),

McGraw-Hill.

(9)   Johnson, R. W. and Normann, R. A., Ann. Biomed.

58

© Toyota Central R&D Labs., Inc. 2013 http://www.tytlabs.com/review/

R&D Review of Toyota CRDL, Vol.44 No.1 (2013) 53-59

 0

 1

 2

 1  2  3
2/33/2

)
(HS

H 0

Fig. 5 Scale function for the exponent of the escape rate.

-1

 0

 1

 0  0.2  0.4  0.6  0.8  1

theory

simulation

πω 2/st

)
(ty

Fig. 6 Response to a weak sinusoidal perturbation.

( )y t〈 〉



Eng., Vol. 16, No. 3 (1988), pp. 265-278.

(10) Rudin, L. I., Osher, S. and Fatemi, E., Physica D,

       Vol. 60, No. 1-4 (1992), pp. 259-268.

(11)  Graben, P. B., Phys. Rev. E, Vol. 64, No. 5 (2001),

051104.

(12) Benzi, R., Sutera, A. and Vulpiani, A., J. Phys. A:
Math. Gen., Vol. 14, No. 11 (1981), pp. L453-L457.

(13) Gammaitoni, L., Hänggi, P., Jung, P. and

       Marchesoni, F., Rev. Mod. Phys., Vol. 70, No. 1

(1998), pp. 223-287.

(14) McNamara, B. and Wiesenfeld, K., Phys. Rev. A,

       Vol. 39, No. 9 (1989), pp. 4854-4869.

(15) Wiesenfeld, K. and Moss, F., Nature, Vol. 373 (1995),

pp. 33-36.

(16) Fauve, S. and Heslot, F., Phys. Lett. A, Vol. 97, No. 1

(1983), pp. 5-7.

(17) Landa, P. S. and McClintock, P. V. E., J. Phys. A:
Math. Gen., Vol. 33, No. 45 (2000), pp. L433-L438.

(18) Jeyakumari, S., Chinnathambi, V., Rajasekar, S. and

Sanjuan, M. A. F., Chaos, Vol. 19, No. 4 (2009),

043128.

(19) Rajasekar S., Jeyakumari, S., Chinnathambi, V. and

Sanjuan, M. A. F., J. Phys. A: Math. Theor., Vol. 43,

No. 46 (2010), 465101.

(20) Rajasekar, S., Abirami, K. and Sanjuan. M. A. F.,

Chaos, Vol. 21, No. 3 (2011), 033106.

(21) Landau, L. D. and Lifshitz, E. M., Mechanics, 3rd
Ed. (2004), Elsevier.

(22) Kubo, R., J. Phys. Soc. Jpn., Vol. 12, No. 6 (1957),

pp. 570-586.

(23) Kubo, R., Toda, M. and Hashitsume, M., Statistical
Physics II: Nonequilibrium Statistical Mechanics
(1985), Springer.

(24) Chen, L.-Y., Goldenfeld, N. and Oono, Y., 

       Phys. Rev. E, Vol. 54, No. 1 (1996), pp. 376-394.

(25) Goldenfeld, N. D., Lectures on Phase Transitions and
the Renormalization Group (1992), Addison-Wesley.

(26) Amit, D. J., Field Thepry, the Renormalization Group
and Critical Phenomena (1984), World Scientific.

(27) Ichiki, A., Tadokoro, Y. and Takanashi, M., J. Phys.
A: Math. Gen., Vol. 45, No. 38 (2012), 385101.

(28) Bena, I., Van den Broeck, C., Kawai, R. and

Lindenberg, K., Phys. Rev. E, Vol. 66, No. 4 (2002),

045603.

(29) Doering, C. R. and Gadoua, J. C., Phys. Rev. Lett.,
Vol. 69, No. 16 (1992), pp. 2318-2321.

(30) Doering, C. R., Horsthemke, W. and Riordan, J.,

Phys. Rev. Lett., Vol. 72, No. 19 (1994), pp. 2984-2987.

(31) Ichiki, A, Tadokoro, Y. and Dykman, M. I., 

       Phys. Rev. E, Vol. 85, No. 3 (2012), 031106.

(32) Kramers, H., Physica, Vol. 7, No. 4 (1940), pp. 284-304.

(33) Dykman, M. I., Luchinsky, D. G., Mannella, R.,

McClintock, P. V. E., Stein, N. D. and Stocks, N. G.,

Nuovo Cim. D, Vol. 17, No. 7-8 (1995), pp. 661-683.

(34) Dykman, M. I., Phys. Rev. E, Vol. 81, No. 5 (2010),

051124.

(35) Dykman, M. I. and Krivoglaz, M. A., Physica A,

       Vol. 104, No. 3 (1980), pp. 480-494.

59

© Toyota Central R&D Labs., Inc. 2013 http://www.tytlabs.com/review/

R&D Review of Toyota CRDL, Vol.44 No.1 (2013) 53-59

Akihisa Ichiki

Research Fields: 

- Statistical Physics

- Nonlinear Dynamics

- Signal Processing

- Information Science

Academic Degree: Dr.Sci.

Academic Society: 

- The Physical Society of Japan

Yukihiro Tadokoro

Research Fields: 

- Noise-related Phenomena

- Packet Radio Communications

- Vehicular Networks

- CDMA

Academic Degree: Dr.Eng.

Academic Societies: 

- IEEE Communication Society

- The Physical Society of Japan

Masaki Takanashi

Research Fields: 

- Superresolution Techniques

- Ultrawide-band Systems

- Signal Processing

Academic Degree: Dr.Eng.

Academic Society: 

- IEEE Communication Society

Mark I. Dykman *

Research Fields: 

- Fluctuation Phenomena Far from

Thermal Equilibrium

- Transport in Correlated Electron

Systems

- Nonlinear Vibrations

- Nonlinear Optics of Solids

- Quantum Information

Academic Degrees: Dr.Sci. and Ph.D.

Academic Society: 

- American Physical Society

*Michigan State University


