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1. Preface

Fossil fuels have contributed to the development 
and prosperity of humankind; however, they have 
also caused environment pollution and now a serious 
concern with respect to global warming. We have 
experienced energy crises such as the so-called “Oil 
Shock” several times in Japan due to various causes. 
Every time it has occurred, electric vehicles (EVs) 
have received significant attention, and accordingly 
high performance batteries for EVs have been strongly 
demanded.

Toyota Central R&D Labs., Inc. has engaged 
in battery research since 1960. Much R&D effort 
has been placed on several types of batteries; 
however, these have proven to be insufficient for EV 
applications, because the energy density was too low 
for desirable EV range and the charging time was too 

long for convenient operation. Because of the poor 
performance of batteries, EVs were already considered 
as a secondary use car with limited range, but the 
battery performance at that time was still insufficient 
even for the criteria. R&D on Li batteries has made 
much progress recently and they are expected for 
EV applications again. However, current EVs using 
state-of-the-art Li batteries still don’t satisfy adequate 
range and acceptable charging time requirements, 
especially when compared to internal combustion 
engine vehicles. Fuel cells (FCs) have been considered 
to be a good solution, therefore we started our FC 
research work for transportation applications in 1989.

2. Selection of FC Type

FCs are classified by their electrolytes as shown 
in Table 1,(1) because the electrolytes determine 
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3. PEFC

Schematic diagrams of a membrane electrode 
assembly (MEA) and a PEFC stack are shown 
in Figs. 1 (a) and (b) respectively.(2) The MEA is 
comprised of an ion exchange membrane, which acts 
as an electrolyte, and two electrodes, a cathode and 
an anode, where electrochemical reactions take place. 
The MEAs are sandwiched by separators to form a 
stack. The role of the separator is to make an electrical 
contact and provide appropriate supplies of air and 
fuel (hydrogen) to each electrode without mixing. 
In the primary stage of R&D, it was considered that 
only carbon materials could be used as the separator 
because no other materials can endure in the acidic 

the major features of FCs, such as the operating 
temperature, usable fuel (pure hydrogen, reformate or 
direct methane), the prime cell component, and so on. 
Considering transportation applications, the FC system 
must be compact with high power and high efficiency, 
and have ease of start-up at ambient temperature. The 
polymer electrolyte fuel cell (PEFC) and alkaline fuel 
cell (AFC) appeared to be viable candidates based 
on the above criteria. AFCs were already developed 
for space applications and some trials for vehicle 
applications were performed. However, carbon 
dioxide in the air deteriorates the alkaline electrolyte, 
which won’t occur in space applications where pure 
oxygen is used as the oxidant.(1) Therefore, the PEFC 
was selected as the research target.

Table 1    Summary of Major Differences of the Fuel Cell Types.(1)

PEFC: Polymer Electrolyte Fuel Cell
AFC: Alkaline Fuel Cell
PAFC: Phosphoric Acid Fuel Cell
MCFC: Molten Carbonate Fuel Cell
ITSOFC: Intermediate Temperature Solid Oxide Fuel Cell
TSOFC: Tubular Solid Oxide Fuel Cell

PEFC AFC PAFC MCFC ITSOFC TSOFC

Electrolyte
Ion Exchange
Membranes

Mobilized or
Immobilized
Potassium
Hydroxide

Immobilized
Liquid

Phosphoric
Acid

Immobilized
Liquid
Molten

Carbonate

Ceramic Ceramic

Operating
Temperature 80ºC 65ºC~220ºC 205ºC 650ºC 600~800ºC 800~1000ºC

Charge
Carrier H+ OH– H+ CO3

= O= O=

External
Reformer for
CH4 (below)

Yes Yes Yes No No No

Prime Cell
Components Carbon-based Carbon-based Graphite-based Stainless-

based Ceramic Ceramic

Catalyst Platinum Platinum Platinum Nickel Perovskites Perovskites

Product
Water
Management

Evaporative Evaporative Evaporative Gaseous
Product

Gaseous
Product

Gaseous
Product

Product Heat
Management

Process Gas +
Independent

Cooling
Medium

Process Gas +
Electrolyte
Calculation

Process Gas +
Independent

Cooling
Medium

Internal
Reforming +
Process Gas

Internal
Reforming +
Process Gas

Internal
Reforming +
Process Gas

Reprinted from Fuel Cell Handbook Fifth Edition (2000), p. 1-5, the U. S. Department of Energy.
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3. 1. 1  Membrane and Ionomer

A proton exchange membrane is used as the 
membrane, which functions as both a proton conductor 
and a gas barrier. The proton exchange membrane 
must be hydrated to exhibit proton conductivity by 
the release of protons from its functional moieties, 
which are typically sulfonic acid groups. The water 
uptake of the membrane is important to maintain high 
conductivity and to reduce IR polarization due to the 
membrane.(3) The molar density of sulfonic acid in the 
membrane is an important factor to control its proton 
conductivity. This property is generally expressed 
by equivalent weight (EW), which represents the 
molecular weight per one sulfonic acid moiety, so 
that a lower EW would result in higher conductivity. 
Therefore, low EW membranes have been investigated 
and higher proton conductive membranes than 
conventional Nafion with EW of 1100 have been 
obtained.(3,4) However, it is difficult to reduce the 
EW value to lower than around 700-800 in the case 
of a perfluoro membrane, which is typically used in 
PEFCs, because the perfluoro membrane keeps its 
shape by Van der Waals’ force between main chains 
without mutual crosslinking(2) but the Van der Waals’ 
force is not strong, so quite a little portion of main 
chain is required 

There are two mechanisms for proton conduction 

environment and maintain good electrical conductivity 
without the formation of insulation layers based on 
the analogy of phosphoric acid fuel cells (PAFCs). In 
order to obtain a compact FC stack, thinner separators 
are required because the MEAs are already sufficiently 
thin. However, it is difficult to produce thin carbon 
separators at low cost; therefore metal separators with 
surface coatings have been investigated and promising 
technologies have been developed. The details of the 
separator will be reported elsewhere near future.

3. 1  MEA

Figure 2 shows an image of cell voltage-current 
characteristics with the various polarization 
components. The internal resistance (IR) polarization 
is dominated by the ionic resistance of the membrane 
and the electric resistances of the electrodes. Each 
activation polarization is controlled by the catalyst 
activity and the effective surface area of the catalyst, 
which is expressed as the electrochemical surface area 
(ESA). The diffusion polarization is related to mass 
transfer, i.e., how fast each reactant can be supplied to 
the catalyst surface and how fast the reaction product 
(water) can be removed away from the reaction zone 
mainly in the cathode. Higher cell voltage is required 
for higher efficiency and higher current density for 
higher power. 

Fig. 1    Schematic image of membrane electrode assembly and stack of PEFC.(2)
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channel, because water generation rate (current 
density) is not uniform throughout the flow channel; 
the concentration of reactants (fuel and oxidant) is 
high at inlet portion of flow channel but it decreases 
gradually along with flow channel due to  consumption 
of reactants by the electrochemical reaction, which 
induces increase in the polarization resistance and 
thus reduces water generation rate (current density). 
Therefore, water management is very important, not 
only vertically to the membrane but also horizontally 
to the membrane.(6,7)

The first PEFC utilized a hydrocarbon membrane 
but had a severe durability problem.(1) The perfluoro 
membrane has subsequently become the main 
material, although hydrocarbon membranes are 
still investigated for cost reasons. The gas barrier 
properties of hydrocarbon membranes are superior to 
those of perfluoro membranes; therefore, when the gas 
barrier properties are critically important, such as with 
direct methanol fuel cells where chemical shorting by 
methanol crossover is serious, hydrocarbon membrane 
would be a better choice.(8)

Another issue for the membrane is its mechanical 
strength because it suffers from repeated tension 
during wet and dry cycles under FC operation. 
Perfluoro membranes are not usually crosslinked and 
they are prone to creep and tear under a worst case 
scenario, and thus some reinforcement is required. A 
crosslinked perfluoro membrane has been investigated 
and bis(sulfonyl)imide crosslinked membrane have 
improved mechanical properties at high temperature 

in the membrane: the Grotthuss mechanism and the 
vehicular mechanism, where the former provides 
better proton conduction. The protons travel through 
ion channels in the former mechanism; therefore, 
the formation and continuity of the ion channels are 
important. The ion channels are organized well when 
the membrane is adequately hydrated at middle to 
high relative humidity (RH), but are not when poorly 
hydrated at low RH. A membrane with low EW can 
easily form continuous ion channels; therefore, 
membranes that are usable at low RH were considered 
to be realized by this concept. A high acid-density 
model electrolyte with EW of 175 was synthesized 
and exhibited high proton conductivity (> 0.01 S/cm) 
at low humidity (120ºC, < 0.01% RH), however, this 
was only a model and the membrane is very brittle and 
not practical.(4)

Adequate water is required for the membrane to 
exhibit good proton conductivity, however, excess 
water causes blocking of the electrodes, which hinders 
reactant supply to the electrodes and limits current 
density, i.e., the diffusion polarization increases. Water 
generation at the cathode by electrochemical reaction 
and electroosmotic flow induce larger water uptake at 
the cathode side than that at the anode side, so that 
the excess water problem is typically observed at the 
cathode side, especially at higher current density, 
although back diffusion of water relieves the uneven 
water uptake distribution when thinner membranes 
are used.(5) This uneven water uptake distribution 
in the membrane would also occur along with flow 
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Fig. 2    Cell voltage and polarizations.
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generally improved; however, the particle size has 
become larger and the mass activity is limited. The use 
of a chelating agent to Pt-Fe alloy suppresses particle 
size growth and a higher mass activity than pure Pt 
has been obtained.(17) Other methods to improve the 
activity of the cathode are under investigation.

Considering the Pt catalyst, a reduction in the 
amount of Pt is important for cost reasons. The 
electrochemical reaction takes place on the surface 
of the catalyst, so smaller particles are preferable to 
obtain high ESA with a limited amount of Pt. Thus 
Pt has been supported on a carbon (Pt/C). The size of 
supported Pt particles is varied with the supporting 
methods and the carbon materials used as supports. It 
was well known that there was the particle size effect 
of the ORR on Pt catalysts; however, the reasons for 
this were yet to be clarified. The reason became clear by 
a first principles-based mean-field model calculation. 
The specific activity decreases with decrease in the 
particle size because increased Pt-O surface coverage 
hinders the ORR.(18,19) As shown in Fig. 3,(20) the mass 
activity becomes maximal at a diameter of 2 nm, which 
is consistent to experimental studies.(20)

Even if a sufficient Pt surface area is provided in the 
catalyst layer, the entire surface cannot be necessarily 
utilized for the reaction. The electrochemical reaction 
takes place only at the three phase interface, where 
oxygen, protons and electrons can access. Therefore, 
it is important to know the utilization of the Pt and 

with a relatively small sacrifice of the proton 
conductivity.(9,10)

In the three phase interface region of the MEA, 
where an electrochemical reaction occurs, the catalyst, 
membrane (electrolyte), and gas phase must contact 
each other. The membrane material in this region, which 
is referred to as ionomer, requires a different property 
than the membranes mentioned the above. The ionomer 
requires high proton conductivity, which is the same 
as the membrane, but high gas permeability, which 
is opposite to the membrane to reduce the diffusion 
polarization. A dispersion of membrane materials 
was typically used as a source of the ionomer, but to 
enhance MEA performance, an improved ionomer 
with a high gas permeability structure is required.(11) 
Another aspect of ionomer is its acid function moiety. 
It is well known that anions adsorb to platinum (Pt) 
electrode surface, which hinders oxygen reduction 
reaction (ORR) in liquid electrolyte, i.e., it induces 
activation polarization. The sulfonic acid moiety 
was not considered to adsorb to Pt surface because 
it is bonded to a main chain, but it turned out that it 
adsorbs and affects the ORR; therefore, a more inert 
acid moiety ionomer is desired.(12) Water uptake also 
influences anion adsorption: sulfonic acid adsorption 
becomes stronger at lower water uptake.(13) Thus, water 
management is again note to be an important factor.

3. 1. 2  Electrode

The ORR occurs at the cathode and the hydrogen 
oxidation reaction (HOR) occurs at the anode. A 
catalyst for both electrodes is generally platinum 
(Pt). The activation polarization at the cathode is 
much larger than at the anode when pure hydrogen 
is provided, although carbon monoxide poisoning 
is a serious issue in the case of reformate fuels.(14,15)

Therefore, much effort has been done on the cathode 
improvement. Non-Pt catalysts are desirable to 
reduce cost and have been investigated world wide. 
A heat-treated cobalt tetraphenylporphyrin supported 
on active carbon, which retains the Co-N4 structure, 
has exhibited good activity for the ORR(16) but still has 
inadequate performance by some orders of magnitude 
compared to Pt. Thus, Pt and Pt-based catalysts are 
still predominately employed as electrocatalysts 
for PEFCs. The use of Pt alloys is one approach to 
improve activity, although they require heat treatment. 
The surface activity of the alloy catalysts has been 

Fig. 3	 Dependences of the specific activity (mA/cm2) 
and mass activity (A/Pt-mg) on the diameter of the 
nano-particle at 0.9 V (RHE).(20)
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against thickness as shown in Fig. 5.(29) The reciprocal 
of diffusion-limited current density decreases linearly 
with decrease in film thickness under all three RH 
conditions examined, but it does not become zero at 
zero thickness. This indicates that there is another 
resistance for oxygen permeation through the ionomer 
other than diffusion, which is considered to be 
dissolving resistance or other interfacial barriers.(29-31)

3. 1. 3  Durability of MEA

Once advancement of the R&D focus on the initial 
performance was attained, durability issues arose.(32) A 
gradual decline in cell voltage and an abrupt increase 
in gas crossover rate were observed in durability test 
of the MEA. The former is related to the deterioration 
of the cathode and the latter to membrane degradation, 
and those two are intimately related.

Pt in the cathode catalyst layers is subject to 
oxidation and reduction during cell operation 
(potential cycling) and some portion of the Pt 
dissolves and precipitates somewhere. The situation 
between Pt particles near membrane side and near gas 
diffusion layer (GDL) side is different. The number 
of Pt particles for all sizes decreases with time at 
the position near the membrane, which means Pt 
dissolving is dominant in this region and dissolved 

increase it to its maximum. A precise method to 
measure Pt utilization using CO was established and 
applied to Pt/C catalysts with different types of carbon 
under various humidity conditions. The Pt utilizations 
with a porous carbon and a solid carbon are shown as 
a function of RH in Fig. 4.(21) Pt particles are supported 
on the outer surface and inside of the pore of the former 
carbon but only the outer surface for the latter carbon. 
The Pt utilization of the former increases with increase 
in RH, while that of latter is constant. This indicates 
that Pt on the outer surface is covered with ionomer 
and is kept in a proton channel regardless of the RH 
conditions, while Pt inside the pore is not covered with 
ionomer but is connected to a proton channel when 
water permeates into the pore at high RH. The value 
of Pt utilization currently attained is ca 90%, so there 
remains little room for improvement in this area.(21-24)

Comprehensive techniques have been developed for 
diagnosis of the cathode catalyst layers of the MEA 
that involve evaluation of the electronic conductivity, 
protonic conductivity and gas diffusivity.(25) The 
results indicated that gas diffusion in the catalyst layer 
limits cell performance the most. Thus, the porosity 
in the catalyst layer is important, which is affected 
by support materials, the composition of the layer, 
and the fabrication methods.(26-28) Oxygen is supplied 
through the pores but at the last stage it must go 
through the ionomer to reach the catalyst surface, so 
the oxygen permeability in the ionomer is important. 
The oxygen diffusion rates in cast Nafion films with 
different thickness were evaluated and the reciprocal 
of diffusion-limited current density values are plotted 

Fig. 4	 The RH dependence of Pt utilization at 
80˚C: different Pt-supported sight.(21)

Pt
 u

til
iz

at
io

n 
[%

] 

120 
 

100 
 

80 
 

60 
 

40 
 

20 
 

0 

 
 
 
 
 
 
 
 

only on C surf. 
both on C surf. & inside 

 
 
0  25  50  75  100 
 

RH [%] 
Fig. 5	 Relationship between reciprocal 

of diffusion-limited current density 
and Nafion thickness at 80ºC.(29)

Reprinted from ECS Transactions, Vol. 33, No. 1 (2010), 
pp. 1217-1227, © 2010 ECS, with permission from the
Electochemical Society.

Reprinted from ECS Transactions, Vol. 50, No. 2 (2012), 
pp. 1487-1494, © 2012 ECS, with permission from the 
Electochemical Society.
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of hydrogen in a vehicle. On the other hand a liquid 
fuel can be refilled quickly and stored compactly in a 
vehicle, but requires reforming to hydrogen with a CO 
content of less than 50 ppm.(1) In addition, the start up 
time and thermal managements are important issues 
for reformer systems. Table 2(2) shows a comparison of 
hydrogen storage systems for PEFCs. This comparison 
was made over 20 years ago; however, the situation 
has not changed significantly.

3. 2. 1  Hydrogen Storage

Hydrogen storage options are pressure vessels, 
liquid hydrogen, metal hydride (MH), absorbent and 
chemical materials. A pressure vessel is the simplest 
way to store hydrogen but is bulky and heavy. Liquid 
hydrogen has a severe problem of boil off, so the other 
options have been investigated mainly.

MHs can store hydrogen compactly, which are more 
compact than liquid hydrogen as a material, and they 
absorb heat when they release hydrogen, which is 
advantageous to utilize for cooling the FC system, 
although this also means a heat exchanger is required 
for quick charge and discharge of hydrogen. The MH 
system is heavy, so hydrogen content by weight is 
quite low.

To search for a good MH candidate, precise structure 
analyses, first principles calculations and material 
syntheses were done for various MHs including 
complex metal hydride.(46-100) The bonding nature of 
hydrogen in the materials was fully uncovered by the 
maximum entropy method (MEM) from X-ray powder 
diffraction data using synchrotron radiation, which 
provided a good guide for further investigations. One 
of the examples is shown in Fig. 6.(56) The standard 
heat of formation of the material (ΔH) represents 
the stability, which is the temperature of hydrogen 
release. First principles calculations showed a good 
correlation between the calculated ΔH value and the 
electronegativity, which is useful to search for potential 
candidates from literatures. Figure 7(68) shows the 
example for borohydrides and the same correlations 
were obtained in other MH systems. However, 
appropriate temperature materials have low hydrogen 
content, while high hydrogen content materials have 
higher temperature. No good MH materials have been 
found for passenger FC car applications, however, 
some materials can be used for FC forklifts where 
heavy weight is acceptable.

Pt diffuses into the membrane and precipitates in the 
membrane near the cathode to form a Pt-band. On the 
other hand, the number of large Pt particles increases 
at the position near the GDL, which means dissolved 
Pt deposits on larger Pt particles. These phenomena 
were confirmed TEM observation and simulations. 
The mechanisms are different in the different positions 
of the catalyst layers, although both phenomena 
contribute to a reduction in the ESA and induce the 
gradual decline in the voltage.(33-36) The use of larger 
Pt particles and the use of modified Pt are possible 
options to mitigate this, because the corner of the Pt 
particles is the most unstable position; the ratio of Pt 
atoms at corner decreases with increase in particle size, 
thus, the unstable portion ratio in Pt particle decreases 
in larger particles, and it would be effective to protect 
the corner Pt with some materials (modified Pt).(37,38)

The perfluoro membrane materials are not hard, 
therefore there is some possibility that something hard 
could penetrate into the membrane and make holes, 
which could be induced by carbon fibers used in GDL 
and reproduced by a model experiment.(39) However, 
the most serious degradation mode is not mechanical 
one but chemical.(39-45) Fluoride ions were detected 
in durability test due to attack of the membrane 
by hydrogen peroxide radicals generated at the 
electrodes. The membrane was the component that 
most suffered from deterioration problems at the 
beginning of the PEFC research when hydrocarbon 
membranes were used and then replaced by perfluoro 
membranes. The perfluoro membrane had been widely 
used in the soda industry for ion exchange membrane 
electrolysis. Therefore, the perfluoro membrane was at 
first considered to be chemically stable, although this 
was not the case. Pt in both electrodes and the Pt-band 
acts as a creator of hydrogen peroxide radicals and/or 
a terminator of them depending on the neighboring 
concentration of hydrogen, oxygen, and hydrogen 
peroxide radicals, which makes the phenomenon 
complicated. Thus, variety of additives to mitigate the 
membrane degradation have been examined and an 
effective one has been developed.

3. 2  Fuel

Activation polarization at the anode is at a minimum 
when pure hydrogen is used; therefore, hydrogen 
is the best fuel for PEFCs. However, it requires a 
lot of volume or weight to store adequate amount 
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Table 2    Comparison of hydrogen storage system for PEFC.(2)  (Requirements for 400km driving)

Fig. 7	 Relation between the heat of formation  ΔH and 
the Pauling electronegativity of the cations. The 
straight line indicates the result of the least square 
fitting. The zero-point energy contribution to ΔH is 
approximately taken into consideration.(68)

Reprinted from R&D Review of Toyota CRDL, Vol. 29, No.4 (1994), pp. 13-22, © 1994 Toyota Central R&D Labs., Inc.

Reprinted from J. Alloys and Compd., Vol. 446-447 (2007), 
pp. 310-314, © 2007 Elsevier, with permission from Elsevier.

Fig. 6	 The charge density distribution map in (001) 
plane of MgH2 at room temperature by MEM. The 
contour lines are drawn from 0.0 to 1.5 at 0.15 e/Å3 
intervals.(56)

Reprinted from J. Alloys and Compd., Vol. 356-357 (2003), 
pp. 84-86, © 2003 Elsevier, with permission from Elsevier.
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because no methanol infrastructure exited at that time 
and methanol is both toxic and miscible with water, 
which could prove hazardous for the public in the case 
of spills. Then, there was an increasing expectation that 
gasoline or gasoline like fuels could be used because 
of the existing infrastructure. Reforming fuels with 
C-C bonds requires over 500ºC and practically 800ºC. 
Table 3(115) shows three types of reformer systems. In 
a 2nd generation reformer, a conventional reformer 
component in the 1st generation reformer is substituted 
by a microchannel reactor (MCR) and a CO removal 
component is eliminated by introducing hydrogen 
permeator, which results in a compact reformer system 
applicable to PEFCs (Fig. 9 (a)).(115) The MCR is a 
laminated product of metal foils and reforming gas 
flow passages, and combustion gas flow passages are 
reciprocally constructed. The thermal capacity of the 
MCR is very small, hence it can start up quickly. In 
the 3rd generation reformer, a new concept with a new 
type of FC, a hydrogen membrane Fuel Cell (HMFC), 
was introduced (Fig. 9 (b)).(115) This new FC has an 
ultra thin proton conductor electrolyte supported 
on a solid hydrogen membrane (permeator) that can 
directly accept reformate without removal of CO. The 
HMFC can operate at the same temperature as the 
reformer, so a highly compact system with excellent 
thermal management can be expected. This new FC is 
still under development and there are some issues to be 
addressed prior to practical development.(115-117)

Absorbents such as activated carbons have also been 
investigated but the hydrogen content is quite low at 
room temperature, at less than 2% as a material. An 
increased value of 5% as a materials can be obtained 
at liquid nitrogen temperature but is still low and 
unacceptable.(55,101,102)

Sodium borohydride is a chemical material that 
releases hydrogen by hydrolysis and the hydrogen 
content is high at nearly 10% by weight including the 
required water weight. However, one problem is that 
the hydrogen release reaction is exothermic, so that 
extra cooling energy is required. Another problem is 
that this material has to be chemically synthesized and 
much energy is required for recycle of the material; 
therefore this is not viable for energy storage and 
would be limited only for emergency purposes.(103-109)

3. 2. 2  Liquid Fuel

Methanol was the first prime candidate as a liquid 
fuel for PEFCs, because it can be reformed at 200 
to 300ºC, which is not so far from the FC operating 
temperature of approximately 80ºC and thus allows 
minimum thermal loss. Figure 8(110) shows a plate type 
methanol steam reformer developed by us, which has 
a laminated structure with an evaporator zone, two 
reforming zones, and plate catalytic combustors, and 
was demonstrated to have a sufficient hydrogen output 
with good thermal efficiency.(110-114)

However, methanol was not accepted as general fuel, 

Fig. 8    Plate type methanol steam reformer.(110)

Reprinted from SAE Tech. Paper, Ser., 2002-01-0406 (2002), © 2002 SAE, with permission from SAE International.
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Reprinted from Proc. 16th World Hydrogen Energy Conf., Vol. 1 (2006), pp. 1390-1399, © 2006 AFHYPAC,
with permission from the Association Française pour l’Hydrogène et les Piles à  Combustible.

Component 1st Generation 2nd Generation 3rd Generation

Reformer Monolith Substrate Filter MCR MCR

WGS Reactor HTS & LTS HTS -----------

CO Removal PrOx Hydrogen Permeator
HMFCFuel Cell PEM PEM

Heat Exchanger Evaporator & Recuperator Recuperator & Humidifier Recuperator

MCR: Micro Channel Reactor
HTS: High Temperature Shift Reactor
LTS: Low Temperature Shift Reactor
PrOx: Preferential Oxidation Reactor
PEM: Proton Exchange Membrane Fuel Cell (Polymer Electrolyte Fuel Cell)

Fig. 9    2nd generation and 3rd generation fuel cell system with fuel reformer.(115)

Reprinted from Proc. 16th World Hydrogen Energy Conf., Vol. 1 (2006), pp. 1390-1399, © 2006 AFHYPAC,
with permission from the Association Française pour l’Hydrogène et les Piles à  Combustible.

Table 3    Evolution of the fuel cell system with reformer.(115)

Heat
exchanger

Hydrogen
permeator PEMHeat

exchanger

Humidifier Humidifier

Primary
reactor

B

B

Fuel pump

Mixer

Residual fuel

PrOx air 
pump

Sweep gas

Cathode air pump

Refrigerant pump

Radiator

Residual fuel

Primary
reactor

Mixer Heat
exchanger HMFC

Steam & Residual air
Air

Refrigerant 
air pump

Cathode 
air pump

Flue

Fuel pump

(a) 2nd generation fuel cell system with fuel reformer

(b) 3rd generation fuel cell system with fuel reformer
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