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1. Introduction

Typical catalytic reactors are sometimes operated 
in regions of significant diffusion limitation.(1-10)

This limitation can be partially overcome by using 
monolithic catalysts coated in a catalyst layer on 
a honeycomb-type substrate. This is because the 
catalyst layer, which is known as a washcoat layer, can 
be as thin as 30-300 μm. Still, gas diffusion limitations 
affect the performance of monolithic catalysts.(11-20)

To design washcoat layers without diffusion 
limitations, evaluation methods that enable better 
understanding of diffusion phenomena are required. 
Methods for examining the effective diffusivity 
in the washcoat layer have been reported.(21-24) 

For example, Stary et al. measured the diffusivity 
of He and Ar through a washcoat layer using gas 
chromatography.(23) Zhang et al. measured the 
diffusivity of CO through a washcoat layer with 
a modified Wicke-Kallenbach-type diffusion cell.(24) 
These conventional studies had two disadvantages. 
The first is that these methods sometimes estimate 
an invalid effective diffusivity. Because the washcoat 
layer cannot be separated from the cordierite substrate, 
the gas diffusivity through the washcoat layer must 
be obtained by deducting the gas diffusivity of the 
substrate. This sometimes leads to an invalid result. 
The other problem is that diffusivity was not measured 

at actual operating temperatures. When an automotive 
catalytic converter is employed in the Federal Test 
Procedure, the catalyst temperature is in the range of 
300 to 1073 K.(25) However, the effective diffusivity is 
measured at 298 K in the conventional method.(21-24)

To solve these problems, we developed a method of 
directly measuring the effective gas diffusivity,(26) and 
also developed a measurement cell that can be used 
under heated conditions.(27) In this paper, we report on 
recent developments(26,27) and discuss a gas diffusion 
mechanism based on our latest data(28) and the Mean 
Transport Pore Model (MTPM).(29)

2. Experimental

2. 1  Development of Simulated Washcoat Layer to
Directly Measure Effective Gas Diffusivity 

We used a “simulated washcoat layer” to avoid 
one problem with the conventional method; the 
gas diffusivity in the cordierite substrate makes it 
difficult to evaluate the gas diffusivity in the washcoat 
layer.(26) A metal mesh substrate was used instead of 
a cordierite substrate, making it possible to evaluate 
the gas diffusivity directly because the metal mesh has 
no diffusion resistance. The procedure used to prepare 
the sample is described below.

The simulated washcoat layer used in the experiments 
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2. 3  Evaluating Gas Diffusivity

As shown in Fig. 1(a), a simulated washcoat layer 
separated the upper and lower compartments. The gas 
being evaluated, such as C3H6, was fed into the lower 
compartment. The paired gas that was used along with 
the evaluated gas was Ar. Ar was suitable for use with 
a thermal conductivity detector (TCD). Although Ar is 
not present when an automotive catalyst is employed, 
the main purpose of this research was to investigate 
the gas diffusion phenomena. The effective diffusion 
coefficient was calculated from the gas concentration 
in the outlet flow. Recently, we measured the effective 
diffusion coefficient for H2, He, CH4, Ne, N2, O2, C3H6, 
CO2, and C3H8 at 298 K, 473 K, and 673 K.(28)

3. Results & Discussion

First, the temperature and gas species dependence 
of the effective diffusivity(28) is reported. Next, 
an analysis based on MTPM is described. Finally, the 
gas diffusion mechanism in the simulated washcoat 
layer is discussed.

3. 1  Temperature and Gas Species Dependence of 
Effective Diffusivity

The relationship between effective diffusion 
coefficient and molecular weight is shown in Fig. 2. 
The driving force for the gas diffusion phenomena was 
the random motion of the gas molecules. The mean 
molecular speed is given by Eq. (1), in which R, T, and 
M are the gas constant, temperature, and molecular 
weight, respectively. The increase in effective diffusion 

was made from ZrO2, which was applied to a metal 
mesh by dipping it into slurry containing ZrO2 powder 
and zirconium nitrate. The metal mesh was made of 
stainless steel. The samples obtained were dried at 
393 K for 12 hours and then calcined at 773 K for 
1 hour.(26)

2. 2  Development of Wicke-Kallenbach-type 
Diffusion Cell for Use under Heated
Conditions

The Wicke-Kallenbach-type diffusion cell 
that we developed was made from SUS304, and 
used a metal O-ring, enabling measurements 
under heated conditions.(27) Previously reported 
Wicke-Kallenbach-type cells were not used under 
heated conditions.(21,22,24) This is because the 
conventional diffusion cell uses epoxy resin and/or 
rubber O-rings, which prevent gas from leaking from 
the diffusion cell, and these materials cannot be 
used under heated conditions. Figure 1(a) shows 
a cross-sectional view of the cell developed in our 
previous research.(27) A photograph of the cell is shown 
in Fig. 1(b).

Fig. 1	 (a) The Wicke-Kallenbach-type counter-current 
diffusion cell: (1) gas current control section, 
(2) metal O-ring, (3) SUS section to fix to metal 
mesh, and (4) simulated washcoat layer. 

		  (b) Photograph of the diffusion cell.
Fig. 2	 Temperature and gas species dependence 

of effective diffusivity.
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Then, the effective diffusion coefficient shown in 
Fig. 2, the molar fraction, the bulk diffusion coefficient, 
and the Knudsen diffusion coefficient were substituted 
into Eq. (5), with the results shown in Fig. 3. Almost 
all of the data points fall on a straight line. This means 
that the data set used in the present research can be 
analyzed with MTPM.

The intercept and slope of the straight line in Fig. 3 
provide the mean transport parameters r (362 nm) and 
ψ (0.16). The values of r and ψ represent structural 
property of porous material. For example, Schneider 
et al. reported that the r and ψ values of form of catalyst 
pellets were 340 nm and 0.017, respectively.(29) The 
large difference in ψ between the reported value (0.017) 
and the value obtained in the present research (0.16) 
may be due to some difference in the pore structure, 
such as the porosity.

3. 3  Contribution of Knudsen Diffusion to Net
Diffusion

The first step of the catalytic reaction is the 
adsorption of gas molecules onto active sites on the 
pore wall in the washcoat layer. Since collisions 
between the pore walls and gas molecules are 
classified as Knudsen diffusion, we believe that 
controlling Knudsen diffusion is one solution to avoid 
diffusional limitations on catalytic performance. 
Knudsen diffusion can be controlled by modifying 
the pore structure, but this requires understanding the 
contribution of Knudsen diffusion to net diffusion, 
which can be understood as the percentage value of 
Knudsen diffusion. The calculation procedure was as 
follows.

Since diffusion resistance is the inverse of the 
diffusion coefficient, Eq. (2) means that the total 

coefficient with increasing temperature or decreasing 
molecular weight is due to an increase in the mean 
molecular speed. This is reasonable.

	 (1)

3. 2  Analysis Based on Mean Transport Pore 
Model

We previously reported that bulk and Knudsen 
diffusion took place simultaneously within 
a simulated washcoat layer.(27) Hence, effective gas 
diffusion coefficients (Deff,ij) in a binary gas diffusion 
system (diffusion of gas species i in gas species j ) 
can be described as in Eq. (2), which is a modified 
Stefan-Maxwell equation (see e.g. Ref. (29)). Here, 
Dk

eff,i, Db
eff,ij, αi, and yi are the effective Knudsen 

diffusion coefficient, the effective bulk diffusion 
coefficient, a correction term for differences in the 
molecular weights of the gas species, and the molar 
fraction, respectively. In this paper, MTPM(29) was 
used to analyze the experimental data. This model can 
provide information regarding pore structure. MTPM 
describes Db

eff,ij and Dk
eff,i as Eq. (3a) and Eq. (3b).(29)

 	 (2)

 	 (2a)

 	 (3a)

	 (3b)

Here, Db
ij and Ki are bulk diffusion coefficients and 

Knudsen coefficients, respectively, and ψ and r 
represent the geometric factor and the mean diffuse 
pore radius in MTPM. An important point of MTPM 
is that ψ and r are estimated from experimentally 
measured effective diffusion coefficients. The 
procedure is described as follows.

Eq. (4) is obtained by substituting Eq. (3a) and 
Eq. (3b) into Eq. (2).

 	 (4)

Eq. (4) is converted to Eq. (5).

  (5) Fig. 3    Plot of (1−αi yi) Ki /Dij
b vs Ki /Deff,ij.
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a pore size in order to predict the diffusion mechanism. 
Here, we focus on the mean diffusive radius (r). Using 
r instead of re, the resulting relationship between r/λA 
and the percentage of Knudsen diffusion is shown in 
Fig. 5. When r/λA was between 1 and 8, the proportion 
of Knudsen diffusion was between 60% and 10%. This 
relationship is in accordance with the conventional 
capillary tube model. Although the pore structure of the 
simulated washcoat layer was complex, and there were 
pore size and tortuosity distributions, Fig. 5 indicates 
that r is in accordance with re in the conventional 
capillary tube model. In other words, the complex 
pore structure of the simulated washcoat layer can be 
consistently simplified by using the MTPM.

Either temperature or gas species dependence of 
the Knudsen diffusion on total diffusion, as shown 
in Fig. 4, indicates that the optimal pore size depends 
on gas species and catalytic reaction. To fully explain 
what size of pore is effective for catalytic performance, 
we intend to perform a more detailed investigation 
of the relationship between the Knudsen diffusion 
contribution and catalytic performance as future work. 

4. Conclusion

To better understand gas diffusion phenomena 
in the washcoat layer, we developed a method of 
directly measuring effective gas diffusivity, and also 
developed a measurement cell that can be used under 
heated conditions. The data set of effective diffusion 

diffusion resistance can be explained as the sum 
of the Knudsen diffusion resistance and the bulk 
diffusion resistance. Hence, the contribution of 
Knudsen diffusion to net diffusion can be calculated 
as a percentage value of Knudsen diffusion. As shown 
in Fig. 4, the percentage value of Knudsen diffusion 
varied widely by gas species and was also dependent 
on temperature. For example, at 298 K, the minimum 
value was 12% for C3H8, and the maximum value was 
33% for He. At 673 K, the minimum value was 30% 
for C3H8, and the maximum value was 56% for He. 
Starýa et al. reported on gas diffusivity in a washcoat 
layer on a cordierite substrate for Ar/N2 pairs,(23) and 
determined that the contribution of Knudsen diffusion 
to net diffusion was 36% at 298 K. On the other hand, 
in this research, a value of 21% for N2 at 298 K was 
obtained. The difference may be due to a difference in 
pore structure.

The conventional capillary tube model describes how 
pore size and λA affect  the gas diffusion mechanism.
In the conventional capillary tube model, the gas 
diffusion mechanism depends on re /λA, where re is 
the inner radius of the capillary tube.(30) When re /λA 
is less than 0.1, the Knudsen diffusion mechanism 
is dominant, whereas the bulk diffusion mechanism 
is dominant when re /λA is over 10. When re /λA is 
between 0.1 and 10, the gas diffusion mechanism 
is in a transition region between bulk and Knudsen 
diffusion. Since the pore structure of the simulated 
washcoat layer is complex, it is difficult to determine 

Fig. 5	 Relationship between the proportion of Knudsen 
transport and r/λA.

Fig. 4	 Temperature dependence of the proportion 
of Knudsen transport.
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Nomenclature

Deff,i     effective diffusion coefficient of gas species i, m2/s
Deff,i

k   effective Knudsen diffusion coefficients of gas
           species i, m/s
Deff,ij

b  effective binary bulk diffusion coefficient of the pair 
           i-j, m2/s
Dij

b     binary bulk diffusion coefficient of the pair i-j, m2/s
Ki       Knudsen diffusion constant of gas species i, m/s
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Ψ        ratio of diffusive pore porosity and tortuosity
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