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This report presents a topology optimization method capable of simultaneously designing 
both the morphology and orientation distribution of an anisotropic material. Topology optimization is 
a well-established structural optimization framework that optimizes the material distribution, i.e., density, 
in a given design domain for maximum performance. However, the optimization of structures consisting 
of inhomogeneously distributed anisotropic materials is still in the research phase. In this paper, a topology 
optimization method is extended to handle both an orientation vector distribution and a density distribution. 
The proposed method supports both continuous angle distribution and discrete angle set distribution 
using a Cartesian style orientation vector as the design variable combined with a projection method using 
isoparametric shape functions. The proposed method is less likely to be trapped at unwanted local optima 
when compared with classic continuous fiber angle optimization (CFAO), which directly uses the orientation 
angle as the design variable. The proposed method is built upon modern topology optimization techniques. 
Thus, it is versatile and flexible enough to solve multiload problems or even multiphysics problems. Singly 
loaded and multiply loaded stiffness maximization problems are provided as numerical examples, and the 
characteristics of concurrent density and orientation optimization are analyzed.
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1. Introduction

Topology optimization(1) is the most flexible 
structural optimization framework. The method 
optimizes the material distribution in a given design 
domain for maximum performance. It is well 
established and has been applied to many engineering 
problems. However, the optimization of structures 
consisting of inhomogeneously distributed anisotropic 
materials, such as composite material layout 
optimization, is still in the research phase.

Some of the most practical and promising anisotropic 
materials are fiber-reinforced composites such as 
carbon-fiber-reinforced plastics, CFRPs. The fiber 
orientation is the most important factor determining 
the mechanical properties of such composites. In the 
past, fiber orientation design for such materials was 
rather limited. The composite was either unidirectional 
or a woven fabric, and the design factor is limited 
to combination of these options. Currently, there 
are several new fabrication technologies available, 
such as tailored fiber placement (TFP) based on 
automated stitching machines,(2,3) automated fiber 
placement (ATP), automated tape laying (ATL), and 

continuous fiber printing systems(4) based on 3D 
printing technology. These technologies drastically 
expand the degree of freedom in the orientation 
design of anisotropic composites; however, the design 
methodology to elicit maximum performance from 
these technologies has yet to be well established. 
Topology optimization(1) seems to be the most 
promissing option to support this goal. Topology 
optimization was originally developed under 
consideration of anisotropy in material properties in 
the intermediate state of the optimization procedure 
with an anisotropic microstructure in the formulation 
of homogenization design method, and there has been 
enormous effort made for solving anisotropic topology 
optimization problems.(5-8) In fact, the solution of the 
anisotropic material layout problem has been long 
sought by the aerospace industry, and considerable 
efforts have been made using a variety of numerical 
strategies.(9,10) However, due to the difficulty of 
avoiding local optima,(7,11) a general optimization 
method has not yet been established, especially for the 
simultaneous optimization of topology and material 
orientation with a continuous angle distribution.

In this study, we propose a general topology 
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of an additional design variable, an orientation vector.
In the remainder of this section, the formulation 

of the design variable is briefly summarized, as the 
complete formulation was provided in a previous 
article by the authors.(12)

2. 1  Topology Design

Assume that the following characteristic function 
χ(x) is defined inside D to indicate the object domain 
to be designed, Ωd ;

0   for "x ∈ D \ Ωd ,
1   for ∀x ∈ Ωd .χ(x) =



	

(1)

Here, χ(x) is defined as the Heaviside function of 
a precursor field, ϕ(x):

	 (2)




0   for "x ∈ D \ Ωd ,
1   for ∀x ∈ Ωd .χ(x) = H (ϕ(x)) =

A Helmholtz filter is used (13,14) to regularize the 
function space as

− R2
ϕ ∇2ϕ̃ + ϕ̃ = ϕ,	 (3)

where Rϕ is the filter radius and ϕ̃ is a filtered field. 
To relax χ(x) to the material density field ρ(x), the 
regularized Heaviside Function H̃ is introduced as 
follows:

ρ(ϕ̃(x)) = H̃̃(ϕ̃(x)).	 (4)

The material density is used to interpolate the 
material properties.  For a structural problem, the 
representative constitutive tensor, the stiffness tensor, 
is interpolated between void and solid state using ρ as

Cρ = Cv + ρp(Cs − Cv ),	 (5)

where Cρ, Cv , and Cs are the interpolated tensor, void 
tensor, and solid material tensor, respectively, and p 
is the density penalty parameter. In the following 
discussion, Cs is extended to anisotropic materials 
with a material physical parameter orientation design 
variable.

optimization method capable of the simultaneous 
design of topology and orientation of anisotropic 
materials by introducing orientation design variables 
in addition to the density design variable, expanding 
the idea of design variable projection methods.

 

2. Formulation

Figure 1 shows a schematic of the problem setting.  
In this report, we use a compliance minimization 
problem; that is, maximizing the stiffness of a structure, 
as an example problem. The topology optimization 
formulation starts by defining an extended design 
domain. In the figure, there is a rectangular domain 
labeled as the extended design domain D. In this 
setting, the extended design domain is equivalent 
to the analysis domain, so structural analysis can 
be performed on this box with certain boundary 
conditions, such as a supporting boundary on the 
left side and a load condition on the right side. Then, 
the design variable fields are defined in the extended 
design domain. Each point in the design domain 
may use one or more design variables to represent 
physical properties at that point. Usually, a design 
variable called density, which represents the presence 
of material, is assigned to each point. By defining this 
design variable at all points in the design domain, the 
design variable field is constructed. By determining 
the best distribution of the design variable field, the 
optimization algorithm attempts to find the optimal 
structure. In this report, we propose the introduction 

Fig. 1	 Extended design domain and design variable fields.
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The function Ni(ξ, η) is defined as follows:













N1(ξ, η) = − (1 − ξ)(1 − η)(1 + ξ + η) / 4
N2(ξ, η) =    (1 − ξ)(1 − η)(1 + ξ       ) / 2
N3(ξ, η) = − (1 + ξ)(1 − η)(1 − ξ + η) / 4
N4(ξ, η) =    (1 + ξ)(1 − η)(1 + η      ) / 2
N5(ξ, η) = − (1 + ξ)(1 + η)(1 − ξ − η) / 4
N6(ξ, η) =    (1 − ξ)(1 + η)(1 + ξ       ) / 2
N7(ξ, η) = − (1 + ξ)(1 + η)(1 + ξ − η) / 4
N8(ξ, η) =    (1 − ξ)(1 − η)(1 + η      ) / 2 .

 	 (12)

The relationship between ϑ and υ is analogous to 
the relationship between ρ(x) and ϕ(x). Similarly, 
a Helmholtz filter is used to regularize υ, which resides 
in L∞ space projected to H 1 space. However, this time, 
the regularized field is a vector field

ξ ̃(x)
η̃ (x)υ̃ (x) =  ,	 (13)

 

where υ has a box bound, Eq. (9), but υ̃  does not have 
explicit bounds.

Regularization is enforced with the following 
equation:

ξ ̃
η̃

ξ ̃
η̃

ξ
η− Rυ∇2 + =  ,	 (14)

 

where Rυ = R2
υI, Rυ  is the filter radius for the vector 

field, and I is the identity matrix.  Then, unbounded 
υ̃  is projected into −1 < ξ ̃ < 1, −1 < η̃ < 1 in a manner 
similar to the ϕ̃ to ρ projection.

ξ̄ (x)
η̄(x)

2H̃ (ξ ̃(x) − 1)
2H̃ (η̃ (x) − 1)ῡ  = =  .	 (15)

2. 2  Orientation Design by Isoparametric
Projection

For simplicity, the discussion hereafter will focus 
on a two-dimensional case. A Cartesian representation 
is chosen for the design variable, and the orientation 
field in a given extended design domain is declared as 
follows:

ς(x)
ζ(x)ϑ(x) = ,	 (6)

where

|ϑ(x)| < 1   for  ∀x ∈ D. 	 (7)

υ(x) is a vector field with natural coordinate values ξ 
and η as its elements

 ξ(x)
η(x)υ(x) = ,	 (8)

  
where

ξ ∈ [−1, 1] and η ∈ [−1, 1].	 (9)

We then define the orientation vector field as follows:

Nx
 (ξ(x), η(x))

Ny
 (ξ(x), η(x))ϑ(x) = N(υ(x)) = ,	 (10)

where N is an appropriate isoparametric shape 
function.

Isoparametric shape functions are commonly used in 
the finite element method, and there are various options 
in choosing an isoparametric shape function, N. Here, 
the eight-node bi-quadratic quadrilateral element,(15,16) 
also called the “serendipity” element, is used. The 
serendipity element is defined as follows:





Nx (ξ, η) = ∑8
i =1 ui Ni(ξ, η)

  Ny
 (ξ, η) = ∑8

i =1 ui Ni(ξ, η) ,	
(11)

where vi = {ui, vi}T  is the coordinate of the i-th node 
in the real coordinate system forming a unit circle, as 
shown in the right side image of Fig. 2.  By changing 
the location of vi = {ui, vi}T, the shape function can take 
various shapes of function value bounds. Therefore, 
this function can be utilized to approximate various 
nonlinear functions, and when the element is in the 
unit circle, ‖ϑ‖ < 1 is naturally fulfilled. Fig. 2	 The eight node bi-quadratic serendipity element. 

Left: natural coordinates. Right: real coordinates.
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By changing the governing equations (Eq. (19f )), this 
formulation can be applied to various types of physics 
problems, such as the thermal conduction problem(17) 

which uses a thermal conductivity tensor of a thermal 
composite as a material property, or even multiphysics 
problems involving electromagnetics, fluid dynamics 
and heat transfer(18) to optimize the orientation and 
density of the residual magnetic flux of a permanent 
magnet. In this report, we use elastic equilibrium 
governing equations (Eq. (19f )) as follows:

−∇ · σ = 0   in D,
        u = 0   on ∂Du,	 (20)
   σ · n = t   on ∂Dt .

By assuming plane stress conditions, the constitutive 
laws can be described as

σ = C(ρ, ϑ) · ϵ, 	 (21)

where  ϵ =	 +
T

∂x1 ∂x2∂x2 ∂x12
∂u1 ∂u1∂u2 ∂u21 ( ) .

The objective function for the compliance 
minimization problem is

F =  ʃ
D

Ws dΩ,		 (22)

where Ws  = σϵ /2  is the strain energy density.

3. Numerical Examples

3. 1  Single Load Cantilever

A short cantilever benchmark problem is solved, in 
which the left side ( ∂Du ) is fixed and the middle of 
the right side ( ∂ Ω t ) is subjected to surface loading. 
The analysis geometry and boundary condition 
settings are as shown in Fig. 3. A wc × hc rectangular 
domain is given as the analysis domain, and the entire 
area is designated as an extended design domain, D. 
The geometric parameters wc and hc  are 3 and 1, 
respectively. The −y direction surface load t on ∂Dt  is 
set to unity, and the length of ∂Dt  is hc /10. A square 
grid mesh with a side length of d = 0.02 is used in 
combination with Lagrange linear quadrilateral 
elements. The upper bound of the volume fraction, V̄f , 
is set to 0.5.

Two algorithms are tested. One is concurrent 

 In concert with Eq. (10), the regularized orientation 
field ϑ ̃  is obtained as follows:

Nx(ξ̄ (x), η̄(x))
Ny(ξ̄ (x), η̄(x))ϑ ̃ (x) = N(ῡ (x)) = for ∀x ∈ D. (16)

Finally, the constitutive tensor is transformed 
according to ϑ ̃

Ca = Ci + T̂−1(ϑ ̃ ) · (Cu − Ci ) · T̂' (ϑ ̃ ),	 (17)

where Ca is an interpolated tensor in terms of 
anisotropy, Cu is a given unrotated anisotropic tensor, 
Ci is an isotropic component subtracted from Cu, and 
T̂  and T̂' are transformations that rotate a tensor to 
a direction given by ϑ ; refer to the detailed description 
given in an earlier paper.(12)

Substituting the previous expression Ca into Cs in 
Eq. (5), the complete material interpolation function 
is finally defined as

C(ρ, ϑ) = Cv + ρp(Ci + T̂−1(ϑ ̃ )·(Cu − Ci)·T̂'(ϑ ̃ ) − Cv).
	 (18)

2. 3  Optimization Problem Formulation

The general optimization problem can be formulated 
as follows:

minimize	 F := ʃ
D  

f (u)dΩ,	 (19a)
  ϕ,ξ,η,u
subject to	 ϕ ∈ [ϕ_, ϕ̄ ],	 (19b)

		  ξ ∈ [−1, 1],	 (19c)

		  η ∈ [−1, 1],	 (19d)
 
		  g1 := ʃ

D  
ρdΩ − V̄f  ʃ

D
dΩ < 0,      (19e)

 
		  Governing equations,	 (19f )

		  Material interpolation ,	 (19g)
 

where u is the state variable obtained from the 
governing equations (Eq. (19f )). In the governing 
equations, the material properties are coupled with the 
design variable fields, density (ρ), and the orientation 
vector (ϑ), given by (Eq. (19g)). V̄f is the upper bound 
for the volume fraction of the material in the extended 
design domain.
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red streamlines show that the orientation is strongly 
defined to the streamline direction.

At the beginning, indicated as “initial” in the figure, 
the orientation vector design variable is uniform, so 
there is no streamline. At the second iteration, the 
streamlines appear along the principal stress direction 
of the rectangular cantilever. At the 10th iteration 
step, a non-uniform distribution of the density and 
orientation vector norm is recognized, but it is still 
smooth except for the middle line and there is no 
large change in topology. At the 20th iteration step, 
a site with different orientation direction is generated 
in the low density are of the beam center. At the 30th 
iteration step, the number of discontinuous angle 
sites increases, and a hole is initiated at the tip of the 
cantilever. At the 40th iteration step, the topology 
evolves to a double-cross configuration and the 
orientation distribution shows more complexity. 
Finally, at the 100th iteration, the topology becomes 
clear and the fiber reinforcement orientation angle is 
aligned with the small bars comprising the cantilever 
structure. Note that the orientation vector smoothly 
rotates as the topology progresses, and sometimes the 
change of the fiber orientation angle occurs prior to the 
topological change.

Figure 5 shows the optimal configuration obtained 
by isotropic optimization on the left and serial 
optimization on the right. Since this is a single-load 
problem, the configuration obtained by the concurrent 
optimization is almost identical to that obtained by 
the serial optimization, supporting the empirical 
knowledge that the optimal orientation should coincide 
with the principal stress direction.

3. 2  Multiload Cantilever

In the previous example, even though some 
interaction between the density evolution and 
orientation evolution is observed, the obtained 
topology is very similar to the results of ordinary 
topology optimization that only takes the density 
into account. However, in more complex situations 

optimization, which optimizes the density and 
orientation fields simultaneously, and the other is serial 
optimization, which optimizes the density field first 
and then optimizes the orientation field using a fixed 
optimized density field.

Figure 4 shows the obtained design solution. The 
figure shows seven configurations at various iteration 
steps to depict the evolution of the topology and 
orientation distribution by the proposed method. 
The gray scale image in the background shows the 
topology density, the streamlines show the direction of 
the orientation vector, and the color of the streamlines 
show the norm of the orientation vector. The blue 
streamlines show that the orientation vector has a small 
norm, and therefore a weak orientation, whereas the 

Fig. 3	 Geometry settings for the short cantilever problem.

Fig. 4	 Optimization results for the short cantilever 
problem with a volume fraction of 0.5 using 
a concurrent optimization scheme at various 
iteration steps. The gray scale image, the 
streamline, and the color of the streamline indicate 
the density, orientation direction, and norm of the 
orientation vector (blue: weak orientation, red: 
strong orientation), respectively. Fig. 5    Results of isotropic and serial optimization.
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such as multiload cases, multiphysics(18) or alternative 
physics problems,(17) we may find the simultaneous 
optimization of topology and orientation more 
beneficial.

Here, we extend the problem to multiply loaded 
cases. Figure 6 shows the problem setting. The 
analysis domain and boundary conditions are almost 
identical to the previous case, but two load cases are 
applied in this setting. The first is exactly the same load 
conditions as were applied to the previous example; 
that is, a vertical load is applied to the center of the 
right end of the cantilever ∂Dt, depicted as t1 in the 
figure. The second is applied at the same location ∂Dt 
but horizontally, depicted as t2.  The two load cases 
are analyzed independently, and various combinations 
of load ratio and volume fraction are analyzed and 
optimized.

The objective function Fm is formulated as follows:

Fm = rl F1 + (1 − rl )F2,	 (23)

where rl , (0 < rl  < 1) is called the load ratio, and is 
a weighting factor for the objective function values 
calculated for each load case. Both concurrent and 
serial optimization algorithms are tested for each case.

Figures 7 through 9 show comparisons between 
concurrent optimization and serial optimization 
for various combinations of load ratio and volume 
fraction, and Fig. 10 shows a plot of the objective 
function. In general, concurrent optimization tends 
to yield structures with a fewer members and holes. 
Contrarily, the configurations obtained by serial 
optimization are more complex. The difference in the 
objective is not very large. The maximum difference is 
about 10%, and lower load ratios and smaller volume 
fractions tend to result in larger differences.

One reason for this behavior may be that serial 
optimization determines topology using only the 

Fig. 6	 Geometry settings for the multiload cantilever 
problem.

Fig. 7	 Optimized configurations for the multiload 
cantilever problem (volume fraction Vf = 0.25).

Fig. 8	 Optimized configurations for the multiload 
cantilever problem (volume fraction Vf = 0.5).

Fig. 9	 Optimized configurations for the multiload 
cantilever problem (volume fraction Vf = 0.75).
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orientation field using a fixed optimized density field, 
are compared. The results reveal that both methods 
yield almost identical results for singly loaded cases, 
but in multiply loaded cases concurrent optimization 
could have better performance, depending on the load 
case.
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