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1. Introduction

To ensure the safety and reliability of automobiles, 
the materials used in vehicles must be investigated 
on both macro- and microscopic levels. In this 
context, multiscale material modeling has become 
an active area of computer-aided engineering and 
has been increasingly applied to the estimation 
of macroscopic properties from detailed 
microstructures.(1,2) In multiscale material modeling, 
especially when the implicit finite element method is 
used, the exact calculations of stresses and consistent 
algorithmic tangent moduli are essential to obtain 
accurate physical results and quadratic convergence, 
respectively. Most general-purpose finite element 
software provides a user-defined material subroutine 
to implement the advanced material models because 
they include only a finite number of representative 
and classical material models. However, some novel 
sophisticated material models result in complex 
formulations that can be extremely elaborate and 
error-prone. In such cases, the application of numerical 
differentiation techniques that can provide robust and 

accurate results would be an appealing alternative to 
decrease scientific development time.

Recently, a number of numerical differentiation 
techniques that can be used to implement various 
types of material models have been proposed.(3-9) 
They are based on the implementation scheme by 
Miehe,(10) which uses the finite difference (FD) method 
to approximate tangent matrices in finite element 
formulations. These recently developed techniques 
enhance the FD approximation by applying more robust 
and accurate numerical differentiation techniques, 
such as the complex-step derivative approximation 
(CSDA). However, such techniques require analytic 
expressions of the stress tensors, which are still 
complicated to derive, especially for some advanced 
hyperelastic or finite strain inelastic material models.

Therefore, this study focused on developing 
a unifying framework to implement general dissipative 
material behavior in general-purpose finite element 
software; the developed framework is the incremental 
variational formulation (IVF), which was originally 
proposed by Ortiz and Stainier.(11) The IVF requires the 
implementation of only scalar functions, such as the 
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where ℑ is an operation symbol that represents 
taking the imaginary part of the complex argument.  
This formulation has no roundoff errors even for 
perturbation values as small as h = 10−99.(18) However, 
it should be noted that the CSDA method is applicable 
to only first derivatives, not second or higher-order 
derivatives.

The alternative technique of automatic differentiation 
(AD), also called algorithmic differentiation, is a set of 
techniques that can be used to accurately numerically  
compute derivatives of an arbitrary order with 
computer precision by repeatedly applying the chain 
rule.(19) Fike(14) proposed the HDN approach, which 
is equivalent with forward AD but more intuitive and 
practical, especially for tensor derivatives. The HDNs 
of second derivatives have two nilpotent elements ε1  
and ε2 with the properties:

 . (4)

Two HDNs a = (a1 + a2ε1 + a3ε2 + a4ε1ε2 ) and 
b = (b1 + b2ε1 + b3ε2 + b4ε1ε2) were considered, and 
a = b was defined if and only if all of their components 
are equal, i.e., if a1 = b1, a2 = b2, a3 = b3 and a4 = b4. The
operations ℑε1, ℑε2 and ℑε1ε2 denote taking the 
coefficients of the nilpotent elements of the HDNs 
such that ℑε1[a] := a2, ℑε2[a] := a3 and ℑε1ε2[a] := a4. 
Using the HDNs, Fike(14) developed the HDSD method 
for a scalar function f (x) by substituting hε1 + hε2 for h 
in Eq. (1). The first derivative f ' (x) can be obtained by 
taking the coefficient of either ε1 or ε2 as

 , (5)

and the second derivative f '' (x) can be obtained by 
taking the coefficient of ε1ε2 as

 . (6)

Because the expressions given in Eqs. (5) and (6) do 
not include subtraction or higher-order terms O (h3), 
the results do not contain roundoff or truncation errors.

The extension of the HDSD method to higher-order 
HDNs is straightforward. As an example, to compute 
third-order derivatives, third-order HDNs are required, 
meaning three nilpotent elements ε1, ε2 and ε3 are 
defined with the properties:

free energy, dissipation potential, and yield law in the 
case of elastoplasticity, and it is applicable to a broad 
range of inelastic material models. Furthermore, when 
scalar functions are implemented within the framework 
of the IVF, their thermodynamic consistency is 
a priori guaranteed.(12,13) The main disadvantage of the 
proposed formulation is that it requires the tedious 
calculation of the higher-order tensor derivatives. 
Because the abovementioned CSDA method is 
applicable to only first-order derivatives, the hyper-dual 
step derivative (HDSD), a higher-order numerical 
differentiation scheme proposed by Fike(14) that uses 
hyper-dual numbers (HDNs), was used in this study. 
By combining the HDSD with the IVF framework, 
a fully automatic scheme for the implementation 
of a broad range of different constitutive equations 
in general-purpose finite element software was 
developed. This report reviews previous reports of 
the proposed formulation(15,16) and demonstrates its 
performance by applying it to some material models.

2. Numerical Differentiation Techniques

In this section, the numerical differentiation  
schemes used in this report are summarized based on 
their application to a simple scalar function f (x). The 
following Taylor series expansion was considered:

 , (1)

where h denotes a small perturbation and O is 
Landau's symbol. The classical FD model is obtained 
by neglecting the higher-order terms O (h2) as

 .  (2)

It is well-known that the FD model is very sensitive to 
the perturbation value h; a smaller h in Eq. (1) results 
in a higher accuracy from a strictly mathematical 
viewpoint but also leads to roundoff errors from 
a computational viewpoint. To eliminate this undesired 
sensitivity, Lyness(17) developed the CSDA method. In 
the CSDA method, the perturbation is multiplied by 
the imaginary unit i. Replacing h with ih in Eq. (1) 
and taking only the imaginary part of f (x + ih) yields 
a different differentiation scheme:

 , (3)
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C* IJ was then defined as

 , (11)

where E I is Cartesian basis vector in the reference 
configuration and the italicized and non-italicized 
indices indicate tensor components and tensor  
directions, respectively. Then, by substituting ψ for z, C 
for X, C* IJ for A, and C* KL for B in Eq. (8), the numerical 
stress and tangent modulus could be obtained for the 
HDSD scheme as

 , (12)

 , (13)

where hS and hC are the perturbation values in the 
calculation of the stress and tangent modulus, 
respectively.

4. Incremental Variational Formulation

The IVF provides a general framework for a broad 
range of constitutive equations.(11,20) In this formulation, 
the effective potential Weff in a given time interval 
[tn, tn+1] is defined as

 , (14)

where qn+1 is the collocation of internal variables at 
the current time tn+1 and ϕ is the dissipation potential. 
Here, the incremental potential energy W is given by

 , (15)

and its discretized counterpart is given by

 

        , (16)

where the increment of the internal variable is defined
as Δq = qn+1 − qn and is assumed to be constant in the 
time increment Δt := tn+1 − tn. The minimization problem 
given in Eq. (14) is solved using the Newton-Raphson 
iterative method, and qn+1 is obtained by iterating

, 
     , (17)

 .
(7)

Analogously, fourth-order derivatives require four 
nilpotent elements ε1, ε2, ε3 and ε4. An extension of 
the above discussion reveals that any nth-order HDN 
requires 2n coefficients and accordingly requires 
the corresponding  computational  efforts. In  this  
report,  the operations ℑε3, ℑε4 and ℑε3ε4 of taking the  
coefficients of the third- and fourth-order HDNs are 
defined as follows. A new number system is defined 
with c = c1 + c2ε3 + c3ε4 + c4ε3ε4, where ci (i = 1, 2, 3, 4) 
represents the coefficients in the second-order HDN c 
as ci = ci1 + ci2ε1 + ci3ε2 + ci4ε1ε2 and cij ∈ IR ( j = 1, 2, 3, 4). 
Then, ℑε3[c] = c2, ℑε4[c] = c3 and ℑε3ε4[c] = c4.

The above formulations can also be used for 
tensorvalued derivatives. Because of limited space, 
this report only discusses the application of the HDSD 
scheme. As examples of second-order tensors, A1 and 
A2 were defined as arbitrary second-order tensors on  
IR2 or IR3. Then, the directional derivative of a scalar  
function z(X ) of a second-order tensor argument X in 
the directions of A1 and A2 is given by

 , 
 , (8)

where ∂X and ∂2
XX indicate first and second partial 

derivatives with respect to X, respectively.

3. Application of Hyper-dual Step Derivative 
Scheme to Calculation of Stress and Tangent 
Modulus

The existence of a Helmholtz free energy function 
ψ := ψ(C ) or ψ := ψ(E ) with the right Cauchy-Green 
deformation tensor C and the Green-Lagrange strain 
tensor E was assumed. The constitutive equation could 
then be obtained via ψ as

 , (9)

and

 , (10)

where S is the second Piola-Kirchhoff stress tensor 
and  is the material tangent modulus. A new tensor 
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5. Numerical Examples

In this section, the performance of the proposed 
implementation scheme is demonstrated by applying 
it to some numerical examples. This section focuses 
on two material models, an anisotropic polyconvex 
hyperelastic model proposed by Balzani(21) and a finite 
strain elastoplastic model using the classical von Mises 
yield function including linear isotropic hardening, 
which is based on a multiplicative decomposition of the 
deformation gradient.(22,23) The proposed IVF scheme 
(Fig. 1) was implemented in the general-purpose 
finite-element     software     FEAP,     developed     by 
R. L. Taylor (www.ce.berkeley.edu/projects/feap/).

5. 1  Anisotropic Hyperelastic Materials

The anisotropic polyconvex hyperelastic model is 
given by

until it converges, where (m) denotes the iteration 
number in the Newton-Raphson method.

With this updated internal variable qn+1, the stress 
Pn+1 and corresponding consistent tangent modulus 

n+1 at time tn+1 are computed as

 , (18)

 . (19)

Note that qn+1 is a function of the deformation 
gradient Fn+1 and derivatives up to at least fourth-order 
with respect to Fn+1 and qn+1 are required to compute 
the stresses and tangent moduli via Eqs. (17)-(19). 
Because the IVF is similar to the hyperelastic 
formulation, it is also called “the quasi-hyperelastic 
formulation.” The algorithm is summarized in Fig. 1.

Fig. 1    Algorithm for computation of IVF using HDNs.
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starting from the strain energy function Eq. (20) 
were compared with an analytically derived tangent 
modulus.(6) The relative error e  was defined as

 , (23)

where ( analyt) IJKL are the coefficients of the analytic 
material tangent modulus and ( approx) IJKL are their 
approximations. Figure 2 shows the accuracy of each 
numerical approximation scheme. The FD method 
is quite sensitive to the perturbation value and can 
obtain an optimal accuracy of e  ≈ 10−7 with h ≈ 10−7. 
Increasing or decreasing the perturbation value from 
this value increases the error. The CSDA approach is 
able to achieve an error with computer accuracy at 
perturbation values smaller than approximately 10−9. 
The HDSD error is independent of the perturbation 
value and always achieves computer accuracy.

As a second investigation, a Cook-type cantilever 
beam was considered, as schematically illustrated in 
Fig.  3(a).  Here,  only  one  fiber  family  (nf  =  1)  with
a(1) = 1/√ 3̅ (1 1 1)T was embedded. The material 
parameters were set as follows: α1 = 6.0, α2 = 100.0, 
α3 = 5.0, β1 = 100.0 and β2 = 2.5. The maximum load 
p0 was increased until the ultimate maximum load of 
p0 = 5.0 was reached. First, the HDSD scheme with 
Eqs. (12) and (13) was applied to directly compute 
both the stress and tangent modulus from the strain 
energy function Eq. (20). Second, the FD scheme was 
applied twice as an alternative method of numerically 
computing the stress and modulus from Eq. (20). 
Third, the analytically derived expression for the 

 

         , (20)

where the isotropic part describes the ground substance 
and the anisotropic part represents the embedded 
fibers.(21) The material parameters α1 > 0, α2 > 0, α3 > 0, 
β1 > 0 and β2 > 2 are determined from the least-squares 
fitting of the experimental data, and nf shows the 
number of fiber families. In Eq. (20), 〈•〉 denotes 
the Macaulay bracket and I1 = tr[C], I3 = det[C], 
J4

(a) = tr[CM(a)] and J5
(a) = tr[C 2M(a)] are the principal 

invariants with the structural tensor M(a) = a0(a) ⊗ a0(a), 
where a0(a) represents the fiber direction.

For the first investigation, a homogeneous test 
was conducted with a specific deformation gradient 
F, which includes rotations Q, dilation, and shear 
deformation F0 as

F = QF0 with Q = Rθ1
Rθ2

Rθ3
. (21)

In this example, these deformations are defined as

 
,

 
,

 
,

 
, (22)

where γ implies the amplitude of the shear 
deformation. The material parameters were defined 
as follows: α1 = 1.0, α2 = 1.0, α3 = 0.1, β1 = 1.0 and 
β2 = 3.0. Additionally, the number of preferred 
directions was defined as nf = 2 with a0(1) = 1/3(1 2 2)T 
and a0(2) = 1/√ ̅ 5(2 1 0)T. For the hyperelastic material 
models, the minimization problem given in Eq. (14) was 
not considered, because the effective potential is equal 
to the strain energy function given by Eq. (20). The 
numerical results for the tangent modulus computed 
using the FD method, the CSDA method starting with 
the stress tensor, and the HDSD method Eq. (13) 

Fig. 2 Relative errors e  of tangent moduli 
approximated using the FD, CSDA, 
and HDSD methods.
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those obtained using an analytic implementation of 
the stress and tangent modulus, the FD results differ 
by orders of magnitude at all considered perturbation 
values, and the quadratic convergence can hardly be 
distinguished.

The computational costs of the different numerical 
differentiation schemes are compared in Fig. 4. As 
expected, the computation time of the FD method is 
dependent on the perturbation value and is optimized 
at perturbation values of hS = 10−4 and hC = 10−6. 
The HDSD method is only slightly slower than the 
bestperforming FD method and is faster than the FD 
method with certain numbers of elements. It is worth 

stress was used in combination with the tangent 
modulus numerically computed using the CSDA 
scheme. The resulting Kirchhoff stress distributions τ11 
at the ultimate maximum load p0 = 5.0 are shown in 
Fig. 3(b). The stress distributions obtained using all of 
these numerical differentiation schemes were found to 
be very similar to the analytically derived stress and 
modulus. 

The Euclidean norms of the residuals obtained using 
the FD method with different perturbation values 
hS and hC and the HDSD schemes with hS = 1.0 and 
hC = 1.0 are given in Table 1. Whereas the HDSD 
results yield residuals that are almost equivalent to 

Table 1    Euclidean norms of residuals of Cook-type problem obtained using the FD and HDSD schemes.

Fig. 3 Description of Cook-type cantilever beam and 
resulting deformed configuration with stress 
distribution.

Fig. 4 Comparison of computational times of 
different numerical differentiation methods 
for Cook-type problem.
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thermodynamic conjugate force of α. The dissipation 
potential ϕ is defined using the maximum dissipation 
principle (MDP) as

psup  , (28)

where ΔLp is the constant plastic velocity gradient in 
the current time increment and Δα := αn+1 − αn. The 
elastic domain  is restricted using the yield function 
Y as

 := {(Ʃ, β ) | Y(Ʃ, β ) = || dev Ʃ || − √ ̅ ̅  ̅ 2/3 ̅ β  ≤ 0},(29)

where dev(•) is the deviatoric operator. Through the 
use of Karush-Kuhn-Tucker (KKT) conditions, the 
inf-sup problem given by Eq. (14) and Eq. (28) can 
be rewritten as one parameter minimization problem 
using the Lagrange multiplier Δγ (26) as

          with   ΔγY = 0,   Y ≤ 0, (30)

with the updating

 , 

 . (31)

To demonstrate the performance of the proposed 
HDSD-based IVF scheme for the finite-strain 
elastoplastic model, its application to a statistically 
similar representative volume element (SSRVE) 
of a dual-phase (DP) steel microstructure was 
investigated. The SSRVE depicted in Fig. 5(a), 
which is as statistically similar as possible to the 
real random microstructure,(2) was considered in this 
investigation. In this model, the material parameters 
in Table 2 were used to represent a ferritic matrix 
phase with an embedded martensitic inclusion phase 
in a typical DP steel microstructure. The application of 
a macroscopic shear deformation F‾ to the SSRVE and 
periodic boundary conditions were considered.

The resulting macroscopic stress-strain response and
deformed configurations of the SSRVE with stress 
distributions τ23 are depicted in Fig. 6, Figs. 5(b) and 
(c), respectively. Both the macro- and microscopic 
results depicted in these figures show good agreement 
between the proposed HDSD-based implementation 

emphasizing that the optimal perturbation values are 
generally unknown, meaning the FD method can 
typically be expected to be much slower than the 
HDSD method because the optimal perturbation values 
are likely not used. Moreover, the HDSD method is 
also faster than the CSDA method, although both the 
first and second derivatives are calculated numerically 
in the HDSD method, whereas the CSDA scheme 
requires an analytic expressions for the stress.

5. 2  Associative Elastoplastic Material Models at
Finite Strain

In this numerical example, a finite-strain elastoplastic
material model was applied using the von Mises 
yield function including exponential isotropic 
hardening.(24,25) The multiplicative decomposition 
F = F e ∙ F p with det F p = 1 of the deformation gradient 
F into elastic and plastic parts F e and F p with det 
F p = 1 and the additive decomposition ψ = ψ e + ψ p 
of the Helmholtz energy ψ  into elastic and plastic 
parts ψ e and ψ p were applied in this study. The elastic 
response is defined as

 ,  (24)

where λ and µ are material parameters and be
A 

(A = 1, 2, 3) is the logarithm of the eigenvalue λe
A 

of the elastic left Cauchy-Green deformation tensor 
be = F eF eT as be

A = log(λe
A). The plastic response is 

defined as

 ,  (25)

where α is an isotropic hardening variable, y∞ is the 
initial yield strength, y0 is the plastic yield strength at 
the initialization of linear hardening, η is the degree of
exponential hardening, and H is the slope of 
superimposed linear hardening. The collocation set q 
of the internal variables is defined as

q = [F p,  α]T . (26)

The conjugate internal force vector y of q is

, (27)

where Ʃ is the Mandel stress tensor and β is the 
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6. Conclusion

This report proposed a novel scheme for the 
implantation of a broad range of constitutive equations 
in general-purpose finite element software. The 
proposed scheme involves the automatic calculation of 
stresses and their corresponding tangent moduli using 
an IVF and the HDSD. In the IVF, the unknown internal 
variables are determined by solving a minimization 
problem that consists of an incrementally defined 
potential. The present stresses and corresponding 
tangent moduli can be obtained by differentiating 
the minimized effective potential with respect to the 
present deformation gradient. In this study, the HDSD 
scheme was applied to automatically compute the 
differentiations needed in the IVF.

The proposed implementation scheme has a general
structure that is defined such that once the present 
framework has been constructed, any other 
complicated constitutive equations can be considered 
by simply modifying scalar-valued quantities, such as 
the Helmholtz free energy function, the dissipation 
potential, and the additional yield function in the case 
of plasticity. 

The proposed implementation scheme was 
demonstrated to be extremely robust, accurate, and 

scheme and the classical standard return mapping 
scheme. It is worth noting that the proposed 
implementation scheme has a general structure that 
has been defined such that once the present framework 
is constructed, only scalarvalued quantities, such as 
the free energy function ψ and the dissipative function 
ϕ and the yield function Y, require modification, 
even for the consideration of any other complicated 
constitutive equations.

Table 2    Material parameters for individual phases of DP steel microstructure.

Fig. 6 Macroscopic stress-strain diagram for simple shear 
deformation of SSRVE of DP steel microstructure.

Fig. 5 Description of SSRVE and deformed configurations obtained using the classical 
standard return mapping method and the proposed HDSD-based IVF scheme.
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