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1. Introduction

In the initial design of vehicle bodies, the full plastic 
strength of the frame section is typically evaluated to 
determine the sectional shape, accounting for static 
strength, rigidity, and collision performance. Basing 
the evaluation on the full plastic strength effectively 
utilizes all the steel plating comprising the cross 
section, and the strength is determined with all the 
sheet plates at their yield point.

In modern vehicle bodies, the use of high-strength 
steel plates is becoming increasingly common in order 
to reduce weight while maintaining strength, and this 
is resulting in progressively thinner frame structures. 
When external forces act upon such thin-walled 
frames, their rigidity sometimes decreases before 
plastic deformation occurs. This is mainly because, as 
the thin plates elastically buckle under compressive 
stress, areas of the section lose their ability to spread 
the load. The thinner the plates, the more susceptible 
they are to elastic buckling. Since buckling also reduces 

the maximum load before plastic collapse, evaluations 
based on the full plastic strength may overestimate 
the strength. Thus, various evaluation methods have 
been proposed and are currently in practical use to 
replace those using the full plastic strength. Effective 
width theory is one method of analyzing the effects of 
elastic buckling, and strength evaluations have been 
proposed based on this theory. Using computer-aided 
engineering (CAE), an application of the finite element 
method (FEM), rigidity and strength can be calculated 
to a high degree of accuracy.

However, building a CAE calculation model in the 
initial stages of design is difficult since the vehicle 
shape is often not completely fixed. Also, it is not easy 
to redesign the basic shape, even if it turns out that it 
will not meet the design requirements after the detailed 
shape is fixed. Therefore, it is important to understand 
elastic buckling phenomenon for thin-walled frames at 
the initial design stages in order to create an effective 
design and develop vehicle frames efficiently.

Buckling of thin-walled frames is analyzed based on 
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verify the accuracy of the derived equations. Also, since 
vehicle body frames are being considered, the aspect 
ratio (short side h / long side b) for the box section 
is taken to be within the range 0.4-1.0. Similarly, the 
discussion applies to beams with rectangular plates 
with aspect ratios (width b or h / length l ) of 1/3 or 
lower.

2. Well-known Basic Equations for Buckling of
Plate and Box Beam

Since the box beam studied in this report (Fig. 1) 
is made up of thin plates, in order to consider its 
buckling behavior, it is first necessary to review 
current research results for thin-plate buckling. This 
section will summarize existing research on buckling 
of rectangular plates due to compression, shearing, 
bending, or a combination of these forces. It will also 
describe research results for box beams.

buckling of the constituent plates, and there have been 
several past studies on plate buckling.(1-5) For flexural 
and shear buckling, solutions can be accurately 
approximated using the energy method,(6,7) with 
an infinite sinusoidal series representing the 
buckling deformed shape. Further, both the buckling 
stress and post-buckling behavior of a thin-walled 
structure must be known in order to determine its 
yield strength, and effective width theory for elastic 
buckling is one approach to determining these 
factors.(8,9) Commercially available software(10) exists 
that has analysis functions based on this theory, and 
methods for estimating the strength that account for 
elastic buckling have been proposed. For simply 
supported square plates that in-plane displacements 
of the surrounding edges are constrained as straight 
lines, using a stress function that applies the energy 
method to a formula describing large deflections of 
plates,(11) there are methods(5,12) for determining the 
compressive post-buckling stress distribution and 
the load displacement relationship, without directly 
using effective width theory. Body frame members 
can be regarded as beams with rectangular cross 
sections (hereinafter “box beams”), and the basic 
loads acting upon the frame are an axial compressive 
force, a torsional torque, and a bending moment, or 
some combination thereof. In terms of buckling of box 
beams, the buckling stress for the axial compressive 
force has been solved.(13-16) For square sections, 
the interaction formula have been determined for 
combinations of compression and torsion, and bending 
and torsion.(17,18)

In this report, we present a method for determining 
elastic buckling for basic loads acting upon the box 
beam illustrated in Fig. 1,(19) particularly for the 
case of a compressive force, a torsional torque, and 
a combination of the two. First, equations are derived 
for approximating the shear buckling stress when 
a torsional torque (T ) acts on a box beam. Next, after 
considering the buckling stress interaction formula for 
plates under combined loads (Fig. 2),(20) we propose 
an interaction formula relating compressive and shear 
buckling stresses when an axial compressive force and 
a torsional torque act together upon the box beam.

The FEM is often used to investigate various 
preformances of vehicle structures, including 
structural rigidity and yield strength, as well as crash 
safety. Consequently, in this report, the results of FEM 
computations are taken as being correct and are used to 

Fig. 2 Schematic view of rectangular plate under 
combined loads.

Fig. 1 Schematic view of box beam subjected to 
compressive force and torsional torque.
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2. 2  Box Beam Compression and Torsional Buckling

Kuranishi(13-16) investigated axial compression 
buckling for shearing of a box beam. He determined 
the buckling stress assuming no deflection in the ridge 
connecting two plates (maintaining a straight line), 
a ridge with no simple rotation support for the plates, 
a certain rigidity, and coupling between the deflection 
angle and the moment of the adjoining plates. The 
steps given here can be applied to any sectional 
shape formed by a combination of thin plates, not 
just rectangular sections. The buckling stress is 
expressed as: 

 ,  (8)

where kC is the buckling stress coefficient, which 
is a function of the sectional aspect ratio (h/b). 
As illustrated in Fig. 3,(20) this equation does have 
an explicit form.

Wittrick and Curzon(17,18) determined a buckling 
and buckling stress interaction formula for beams 
of infinitely long equilateral triangular and square 
sections under compression and torsion. It should be 
noted that the buckling deformation mode will vary 
greatly with load ratio and illustrates the relationship 
with buckling stress. Figure 4(20) depicts the buckling 
stress interaction formula curve in square box beams 
as determined by Wittrick and Curzon.

2. 1  Buckling of Rectangular Plates and Buckling
Stress Interaction Formula

We will consider a simply supported rectangular plate 
with a length l, width b, and thickness t as shown in 
Fig. 2 (Young’s modulus is E and Poisson’s ratio is  µ). 
As shown in the figure, when a compressive stress σ, 
shear stress τ, and bending stress σB independently act 
upon the rectangular plate, the buckling stresses σ̂cr,  
τ̂cr, and σ̂Bcr are as given by(1,2,4)

 ,	  ,     (1)

 ,  (2)

 ,  
 , (3)

 ,   . (4)

Note that the buckling stresses for an individual 
plate are written with a carat (^) to differentiate them 
from the buckling stresses for the box beam. For 
buckling under combined loads, the acting stresses are 
expressed using a buckling stress interaction formula. 
For compression, shearing, and flexural buckling, with 
stress components of  σ̂ 'cr,  τ̂ 'cr, and σ̂'Bcr, respectively, 
compression and shearing are related as:

 
  , (5)

 
  , (6)

 
 

 . (7)

Equation (5) represents the buckling stress 
relationship determined by Iguchi,(21,22) expressed 
as a regression formula. Equation (6), presented 
by Chwalla,(23) is proposed as a regression formula 
that closely matches the theoretical analysis results. 
Equation (7) is based on the results of Johnson and 
Buchert,(24) and formulated as an equation by Ziemian 
et al.(4)

Fig. 3 Buckling stress coefficient vs. aspect ratio for cross 
section of box beam under compression.(13,20)
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plate shear stress τ is given by:

 . (9)

Taking the four plates as individual rectangular plates, 
the wider horizontal plates will buckle. Using Euler’s 
buckling stress σe and the shear buckling coefficient kS, 
the shear buckling stress τbcr is calculated as follows:

 , (10)

 . (11)

However, if shear buckling in the horizontal plates 
results in any out-of-plane deformation, this will also 
cause out-of-plane deformation in the vertical plates. 
Equation (10) only describes buckling in the horizontal 
plates in Fig. 1, and since it completely ignores the 
effects on the vertical plates, it is not suitable for 
directly determining the shear stress under torsional 
buckling.

3. 2  Shear Stress under Torsional Buckling Using
the Energy Method

In this section, the shear buckling stress is determined 
for the box beam in Fig. 1 using the energy method, 
taking the out-of-plane displacement for the horizontal 
plates (z-axis direction) as w, and for the vertical 
plates (y-axis direction) as v. If both the horizontal 
and vertical plates are taken as being simply supported 
rectangular plates, their out-of-plane displacements 
under buckling can be expressed as:

 , 

      
 . (12)

The plate inclinations at the shared edge of the 
horizontal and vertical plates are:

 , 

       
.  (13)

If the out-of-plane displacement of the horizontal and 

3. Shear Buckling Stress under Torsion by Energy
Method

When torsional torque acts on a body frame, it can 
be thought of as a shear stress acting upon the plates 
comprising that section. The shear buckling stress on 
a single plate can be determined in simplified form, 
but there are few studies discussing the torsional 
buckling for box beams, as already mentioned in Sec. 2, 
and there is no equation to simply express the shear 
buckling stress under torsion. Wittrick and Curzon 
introduced the buckling stress interaction formula 
above, for when a torsional torque and an axial 
compression force act upon infinitely long rectangular 
box beams, and also mentioned the buckling stress in 
the case of torsional torque acting alone. However, the 
interaction formula by Wittrick and Curzon cannot 
be applied as it stands to rectangular sections with 
an arbitrary aspect ratio and a finite length. Thus, the 
objective in this section is to derive an equation to 
approximate the shear buckling stress and the buckling 
torque when a box beam is under torsion.

3. 1  Basic Formulae for Torsional Buckling of Box
Beams

We will consider the box beam depicted in Fig. 1, 
comprising plates of width b (horizontal plates) and 
height h (vertical plates), assuming b ≥ h, and a length 
l and thickness t (Young’s modulus is E and Poisson’s 
ratio is µ). When a torsional torque T acts upon one 
end of the beam, the relationship between T and the 

Fig. 4 Buckling stress interaction formula curve for square 
box beam under compression and torsion.(18,20)
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     ,

      
(20)

 
,  (21)

where the summation signs for i and j in Eq. (20) mean 
that they are only added when m + i and n + j are odd 
numbers. The matrix for Eq. (20) is:

 .

 (22)

The constants here are:

 
 , (23)

 
 
, (24)

  , (25)

 
  , (26)

 
 
. (27)

The determinant of the coefficient matrix of Фmn must 
be equal to 0 in order for the solution of Eq. (22) not to 

vertical plates are coupled, and the angles at their 
edges are assumed not to change after deformation, 
the coefficients Bmn and Hmn can be expressed using the 
shared coefficient Фmn from Eq. (13) as:

 
 
. (14)

Using this equation, w and v can be expressed as:

 
,

 
       

 . (15)

Thus, the strain energy U and the work WS by the 
torsional torque for the four plates comprising the box 
beam can be expressed using w and v as:

       

      

       
,

 (16)

 
 ,

 (17)

  , (18)

where τ is the shear stress as calculated by Eq. (9), give 
the energy stationary condition of:

 
 .  (19)

Calculating the definite integrals in Eqs. (16) and (17), 
solving for U and WS for the four plates, and combining 
with Eq. (19) gives us the following:
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 , (30)

,  (31)

where σg given by Eq. (21) is a variable independent 
of b, and g ̃ s is the only variable affected by b. As b 
and h are symmetrically included in the equation to 
determine the shear stress for torsional buckling 
described in the previous section, defining gs as 
a revised buckling stress coefficient, replacing (l/b)2  
with l/b and l/h for symmetry, and solving for gs is 
sufficient. This is expressed as follows:

 
 . (32)

As the analytical solution for gs in the above equation 
is obtained through the energy method and, as seen 
from the results of the previous section, is expressed 
as an infinite series, determining a value for gs directly 
from the analytical solution is not simple. Thus, 
an equation is derived to approximate gs in simplified 
form. The conditions for the gs approximation equation 
were that it symmetrically include the effects of both 
horizontal and vertical plates, and that Eqs. (3) and (32) 
match when h = b. The following two equations, where 
i and j are integers, are candidate equations that meet 
the conditions for approximating gs in simplified form:

  , 

         . (33)

In Sec. 5, i and j will be changed to derive a candidate 
approximation equation. The accuracy of this equation 
will then be evaluated by comparing to the results of 
FEM calculations.

be Фmn ≡ 0. The shear stress under torsional buckling  
τcr is determined from this buckling eigen equation, 
and an exact solution can be obtained with a sufficient 
number of terms. For example, using the five terms 
Ф11 - Ф33, τcr is calculated as follows:

 
 . (28)

Timoshenko(1) derived the same equations as 
Eqs.  (23)-(28) for the shear buckling stress of plates, 
except that the above equations add the width h term 
for the vertical plates, symmetrically including b and h 
in the shape (interchanging b and h results in the same 
equations). In the equations, if h = b, then,

 ,

 (29)

which matches the equation derived by Timoshenko.
Further, Timoshenko took Eq. (29) to be sufficiently 

precise for an aspect ratio l/b (or l/h) of 1.5 or lower. 
This report, however, considers plates that form a beam 
and assumes that l/b is 3 or greater, meaning the error 
will be high when solving for the shear stress under 
torsional buckling using Eq. (29). If a large number of 
terms are taken into account, the buckling stress can be 
determined to a high degree of accuracy even for a l/b 
value of 3 or greater; this is impractical, however, as it 
leads to a complex equation.

3. 3  Approximation Equation for Shear Buckling
Stress

Bearing in mind the conclusions from the previous 
section, we here propose an approximation equation for 
determining the shear stress under torsional buckling. 
The shear buckling stress for a plate of width b is given 
by Eq. (10), but b is included in Euler’s buckling stress 
σe and the buckling stress coefficient ks. Therefore, the 
following variables will be defined so that b and h can 
both be considered: 
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The stresses satisfying this condition are expressed as 
σ̂ 'cr and τ̂cr, and the buckling stress components when 
compression and shearing are combined. From the 
above equations, if only considered when the sum of 
m + n is even,(2) the same as when a shear stress acts 
alone, the system of equations for coefficient Cmn is as 
follows:

 

       . (39)

The sums of the above equation are for i only when 
m + i  is  odd,  and for  j  only when n + j  is  odd. The 
matrix for the above equation is:

,

         (40)

 . (41)

The buckling eigen equation of this coefficient matrix 
will give an interaction formula, but it has an infinite 
order. In order to improve the prospects, a buckling 
eigen equation with low-order terms only (C11 and C22) 
is determined, as shown below: 

 

      

 . (42)

The above equation means that the buckling stresses 
for out-of-plane displacement under buckling, which 
has an infinite order, can be approximated using only 
low-order terms as follows:

 ,    , (43)

4. Buckling Stress Interaction Formula under 
Combined Stress in Plate Using Energy Method

In this section, we first discuss the buckling stress 
interaction formulae for plates under various loads, and 
the similarities between these formulae. Based on these 
similarities, we then propose an interaction formula 
relating compressive and shear buckling stresses when 
an axial compression force and a torsional torque act 
together upon the box beam. Finally, in Sec. 5, the 
validity of the proposed formulae is evaluated by 
comparing them with the results of FEM computations.

4. 1  Compressive and Shear Stress

In this section, the buckling stress interaction 
formula for a compressive stress σ and a shear stress τ
acting upon a plate is determined based on the 
energy method. If the out-of-plane displacement due 
to buckling in Fig. 2 is taken as w, the out-of-plane 
displacement w for a simply supported rectangular 
plate can be written as:

  .  (34)

The strain energy U, the work WC due to the compressive 
stress, and the work due to the shear stress WS can be 
expressed as: 

 

       , (35)

  , (36)

  . (37)

From these equations, the energy stationary 
condition is:

  . (38)
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From this, the system of equations for coefficient Cmn 

is as follows:

 

      

       . (49)

The matrix for this system is: 

 

.

  (50)

Further, solving the buckling eigen equation based on 
using only low-order terms (C11, C12, and C21) yields 
the following:

 
 

    

. (51)

As in the previous section, this can be expressed as:

 ,   , (52)

 ,   . (53)

Again, β = 1 gives k B̃ = 27.76 and k S̃ = 17.35, which 
are low-accuracy solutions when compared to the 
actual values of  kB= 23.9 and kS = 9.34. The buckling 
stress interaction formula Eq. (6) for combined 
bending and shear stress is solved by replacing with 
σ̃ˆBcr in Eq. (4) and with τ̃̂cr in Eq. (3).

 ,  , (44)

and the buckling stress interaction formula relating 
compression and shear can be expressed as follows: 

 
 , (45)

where the superscripted tilde (~) signifies provisionally 
approximated values. Thus, for example, if β = 1, the 
result kC̃ = 4 matches the exact solution for kC (from 
Eq. (1)), but the result kS̃ = 11.10 is not accurate 
when compared to the value of kS = 9.34 (Eq. (2)) 
reported by Hayashi.(2) As such, in this report, the 
high-error-margin   σ̃ˆcr and τ̃̂cr in the above formula are 
replaced with the exact and highly precise solutions 
from Eqs. (1) and (3), rewriting the formula as follows:

 
 . (46)

Thus, for a combined compressive and shear stress, 
the above formula first uses low-power terms to 
approximate the infinite series solution for out-of-plane 
deformation under buckling, then a second-order 
buckling stress interaction formula is obtained based 
on the energy method. The resulting formula is thus 
different from the well-known Eq. (5). 

4. 2  Bending and Shear Stress

Following the approach of the previous section, the 
buckling stress interaction formula is now determined 
based on the energy method for the case when a pure 
bending stress σB and shear stress τ act upon the plates 
in Fig. 2. The strain energy of the plate is determined 
using Eq. (35), the work due to shearing using Eq. (37), 
and the work WB due to the bending stress using the 
following equation:

 
 
.  (47)

The energy stationary condition is:

 
 . (48)
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As in the previous section, this can be expressed as:

 ,  , (59)

 ,  . (60)

As m is designed to become the minimum buckling 
stress, with mβ = 3/2, Eq. (59) gives  k ̃B = 25.06, which 
differs from the exact solution of kB = 23.9. If mβ = 1 
in Eq. (60), the first equation yields: 

 .

This matches the exact solution. Meanwhile, the 
second equation becomes:

 .
 

From the above, using a precise solution for bending 
when compressive and bending stress act upon 
a plate yields the following buckling stress interaction 
formula:

 
 
. (61)

4. 4  Similarities between Buckling Stress 
Interaction Formulae

In Sec. 2 and the previous subsection, the following 
buckling stress interaction formulae were obtained for 
a plate acted upon by any two among compressive, 
shearing, and bending stress:

 
 , (5)

 
 , (6)

 , (46)

 
 
. (61)

4. 3  Compressive and Bending Stress

As in Sec. 4. 1, the buckling stress interaction 
formula for the case when a compressive stress σ and 
a pure bending stress σB act upon the plates in Fig. 2 
will be determined based on the energy method. The 
strain energy is calculated using Eq. (35), the work due 
to compression using Eq. (36), and the work due to 
bending using Eq. (47). However, in this section, since 
the x-axis displacement can be expressed in the form 
of a single sine wave,(2) the out-of-plane displacement 
w is given by:

  . (54)

Substituting the above equation into Eqs. (35), (36) 
and (47), the energy stationary condition is:

 . (55)

From this, the following system of equations is 
obtained for the coefficient Cn:

 
 

      

, (56)

where the sum for j is the same as in the previous 
section. The matrix for this system is:

 .

  (57)

Further, solving the buckling eigen equation based on 
using only low-order terms (C1 and C2) yields:

 

        . (58)



http://www.tytlabs.com/review/

20

© Toyota Central R&D Labs., Inc. 2016

R&D Review of Toyota CRDL, Vol.47 No.3 (2016) 11-26

eigen equation calculated using the energy method. 
Meanwhile, since Eq. (5) is an expression of the 
buckling stress relationship calculated as a regression 
formula from a theoretical analysis, there is no 
clear physical meaning for the c = 0 case. However, 
assuming that there is a suitable c based on the types of 
structure and stresses gives meaning to setting c equal 
to 0. Also, selecting a suitable c value should give 
a buckling stress interaction formula that sufficiently 
corresponds to the theoretical analysis and FEM 
calculations.

Approximating the buckling eigen equation obtained 
with the energy method using low-order terms allows 
us to determine a buckling stress interaction formula 
for plates under combined loads. Some of the formulae 
obtained were the same as well-known formulae, and 
some differed. Nonetheless, there are demonstrated 
similarities between the formulae, and they can be 
related through a single parameter.

Note that the formulae derived in this section 
assume that buckling deformation can be expressed 
as a sinusoidal series, including the single-term case. 
Accordingly, the formulae may not apply if buckling 
deformation cannot be expressed sinusoidally due to 
load conditions or boundary conditions. Even in such 
cases, however, a simplified approximation formula 
can likely be obtained by changing the c value.

4. 5  Candidate Buckling Stress Interaction 
Formulae for Compressive and Torsional 
Stress in Box Beams

In this section, we will discuss the buckling stress 
interaction formula for the case where an axial 
compressive force P and a torsional torque T act upon 
a box beam similar to the one in Fig. 1. Equation (5) 
is a known buckling stress interaction formula for 
the case where shearing and compression act upon 
a rectangular plate. Also, Eq. (46) based on the energy 
method was proposed in Sec. 4. 3.

As in Sec. 4. 1, an approximate buckling stress 
interaction formula for P and T acting upon a box 
beam can be determined with the energy method, but 
it is cumbersome to use due to there being four plates. 
Still, since compressive and shear stresses are acting 
upon the four plates comprising the beam section, 
a relationship similar to that for plates is expected. 
Thus, Eqs. (63) and (64) are proposed as candidate 
buckling stress interaction formulae for box beams. 

In this section, we will show the similarities between 
these equations. Noting the following for clarity,

 ,   ,
  

the four equations for when two stresses are combined 
can be written as follows:

 ,
 

 ,

 ,

 
.

Viewing these equations from a higher perspective, 
consider the following equation:

 
 . (62)

In Eqs. (5), (6), (46) and (60), the values for c would 
be  c = 0, c = −1, c = 1/4 and c = 4/25, respectively. 
Figure 5(19) graphs the change in the formulae with 
changes in c. Thus, Eq. (62) indicates that a buckling 
stress interaction formula for various combined 
stresses can be collectively represented by introducing 
a single parameter.

The equations corresponding to c = 1/4, c = −1 and 
c = 4/25 were determined based upon a buckling 

Fig. 5 Variation of buckling stress interaction 
formula with parameter c.
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of one end of the section, with rigid bars connecting 
the center point and all nodes on the end surface. The 
translational degrees of freedom for all nodes on the 
opposite end are constrained.

In order to verify the accuracy of Eqs. (32) and 
(33) relating the approximation equations for shear 
buckling stress, buckling eigenvalues were analyzed 
for the specifications given in Table 1.

For a combined compressive force P and torsional 
torque T, the ratio of P to T is varied as shown in 
Table 2 to perform an buckling eigenvalue analysis. 
The ratio of the compressive stress σ and shear stress 
τ when P and T act on the plate is calculated as given 
below, using the parameter ζ :

 
, (65)

where ζ = 0 when the load is pure compression and 
ζ = 1 when the load is pure torsion (pure shearing).

These formulae take σcr as the compressive buckling 
stress for box beams as calculated by Kuranishi(13-16) 
(Fig. 3) and τcr as the shear buckling stress introduced 
in Sec. 3, as well as σ 'cr and τ 'cr as the compressive and 
shear buckling stress components for combined axial 
compression and torsion. The accuracy of the formulae 
will be evaluated by comparing to the results of FEM 
calculations in Sec. 5.

 
 (63)

  (64)

5. Validation Using Finite Element Method

In this section, the accuracy of the shear buckling 
stress approximation equations introduced in 
Sec. 3 and the buckling stress interaction formulae 
introduced in Sec. 4 is evaluated by comparison with 
FEM computations results.

5. 1  Computation Model and Conditions

In order to verify the equations introduced in 
Secs. 3 and 4, FEM computations were performed 
for the box beam in Fig. 1 with width b, height h, 
length l, and thickness t. Figure 6(20) shows the FEM 
mesh created using generic analysis code in ANSYS 
as the FEM solver. The element size is 2.5 mm for 
both length and width, and 4-node shell elements 
(SHELL 181) were used. The loading point is the center 

Table 2 Dimensions of finite element model for box 
beam for compression and torsion [mm].

Table 1 Dimensions of finite element model for 
box beam [mm].

Fig. 6    Outline of finite element model for box beam.

Label Length (l ) Width (b) Height (h) Thickness (t)

S1 300 80 20, 25, 30, 35, 40, 
45, 50 0.8

S2 300 90 30, 35, 40, 45, 50, 
60, 80, 90 1.0

S3 400 80 30, 40, 50, 70 1.0

S4 400 90 25, 35, 40, 45, 50 1.0

S5 400 100 25, 30, 40, 50, 60, 
70, 80, 90, 100 1.0

S6 500 120 30, 35, 40, 50, 60, 
70, 80 1.2

Label Length (l ) Width (b) Height (h) Thickness (t)

C1 300 90 40 1.0

C2 300 90 60 1.0

C3 300 90 80 1.0

C4 400 100 50 1.0

C5 400 100 60 1.0

C6 400 100 80 1.0

C7 400 100 100 1.0

C8 500 120 50 1.2

C9 500 120 110 1.2
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  . (66)

The values calculated using Eq. (33) exceed the FEM 
values more as i increases. They are larger than the 
FEM values for j = 0, but lower than the FEM values 
for j ≥ 2. Thus, the smallest error is obtained for j = 1, 
yielding the following equation: 

 

  . (67)

The error calculated using the above equation is shown 
in Fig. 10.(20) Within the practical aspect ratio range 
(h/b ≥ 0.4), the error is less than about 5%. Figure 11(20) 
compares the buckling stress calculated using Eq. (67) 
with the FEM results for specification S5.

5. 3  FEM Verification of Buckling Stress Interaction
Formula for Compressive and Torsional Stress

FEM results for the buckling mode for a beam with 
l = 400, b = 100, h = 50 and t = 1.0 mm are shown in 
Fig. 12,(20) and the buckling stress in Eq. (65) is shown 
in Fig. 13(19) versus the parameter ζ . Figure 14(20) 
compares curves produced using Eqs. (63) and (64) 
with the stress ratios computed by the FEM. It can be 
seen that Eq. (63) produces results that are closer to the 
FEM computations. Figure 15(20) plots the difference 
between the results produced by Eq. (63) and the FEM 
computations, expressed as:

5. 2  FEM Verification of Buckling Stress for Box
Beam under Torsion

Figure 7(20) shows the results of an example 
buckling mode for buckling eigenvalue analysis. 
The shear buckling stress is plotted as a function of 
the sectional aspect ratio (δ = h/b) in Fig. 8.(20) The 
labels correspond to those listed in Table 1. The stress 
errors in Fig. 9(20) are determined by comparing 
values calculated using candidate equations with 
i = 1 and j = 0, 1 and 2 based on Eq. (33) for the shear 
buckling stress under torsion with the results of FEM 
computations by the following equation, with τcrFEM 
being the FEM-computed shear force and τcrCurrent being 
the shear force calculated from the candidate equation:

Fig. 9 Shear buckling stress error vs. aspect ratio of 
cross section.

Fig. 8 FEM results for dependence of torsional buckling 
stress on aspect ratio of cross section.
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Fig. 7  FEM results for buckling mode under torsion. (S5 l=400, b=100, h=30~100, t=1.0 mm)

δ = 0.4δ = 0.3

δ = 0.5 δ = 0.6 δ = 0.7

δ = 1.0δ = 0.9δ = 0.8

Fig. 7 FEM results for buckling mode under torsion 
(S5 l = 400, b = 100, h = 30-100, t = 1.0 mm).
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deviation is as large as 12%, the accuracy of Eq. (63) 
is not very high.

As described in Sec. 4. 4, the compressive and shear 
buckling stress interaction formulae Eqs. (63) and 
(64) can be expressed as the formula below, using the 
parameter c.

   (69)

 
 , (68)

where σcrFEM and τcrFEM represent the FEM computed 
compressive and torsional buckling stresses, 
respectively, and σ 'crFEM and τ 'crFEM are the buckling 
stress components computed from the FEM buckling 
eigenvalue analysis for combined compressive and 
torsional stress. The labels correspond to those listed 
in Table 1. It can be seen that the largest differences 
appear at about ζ = 0.4. This is the effect of the aspect 
ratio δ of the beam section. As δ approaches 1 and 
the section becomes more square, greater deviation 
occurs between the two sets of results. Given that this 

Fig. 11 Comparison of buckling stress obtained by FEM, 
plate theory, and current method (S5 l = 400, 
b = 100, h = 40-100, t = 1.0 mm).

Fig. 13 Dependence of buckling stress on stress ratio as 
determined by FEM (C3 l = 400, b = 100, h = 50, 
t = 1.0 mm, ζ = 0.0-1.0).

Fig. 10 Dependence of error in shear buckling stress 
obtained using Eq. (67) on aspect ratio of cross 
section.

Fig. 12 Buckling modes determined by FEM (l = 400, 
b = 100, h = 50, t = 1.0 mm, ζ = 0.0-1.0).
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when the stress ratio ζ is less than or greater than about 
0.38. Thus, the range 0 ≤ ζ ≤ 1 cannot be described 
using a single formula. The result by Wittrick and 
Curzon, the curve from Eq. (69) for c = −1/4, and some 
FEM results (l = 400, b = 100, t = 1.0, h = 50 (δ = 0.5, 
C4), 100 (δ = 1, C7) mm) are compared in Fig. 17.(20) 
It can be seen that the beam section results approach 
the curve by Wittrick and Curzon as the aspect ratio δ 
approaches 1, and the curve approaches c = −1/4 as it 
flattens out.

However, the buckling deformation mode could 
differ due to differences in the structure or loading 
conditions, making it unclear what kind of c value is 
appropriate and what structural parameters affect c.

By setting c = −1/4 (or c = −0.249, if calculated using 
the least squares method), for example, a formula with 
sufficient accuracy can be obtained for compressive 
and torsional buckling for the box beam (Fig. 16).(20)

As described in Sec. 4, Eq. (64) was derived by 
assuming that buckling deformation could be 
expressed as a sinusoidal series. However, Wittrick and 
Curzon(17,18) assumed that buckling distortion included 
both sine waves and hyperbolic functions and derived 
a buckling stress interaction formula for compressive 
and torsional stress in infinitely long rectangular 
plates. As shown in Fig. 4, this formula for beams is 
different to that for compressive and shear stresses in 
plates, and the buckling deformation mode is different 

Fig. 17 Comparison of buckling stress interaction formula 
with c = −1/4 and curve published by Wittrick 
and Curzon(17) with FEM results (l = 400, b = 100, 
t = 1.0, h = 50 (δ = 0.5, C4), 100 (δ = 1, C7) mm).

Fig. 16 Comparison of buckling stress interaction 
formula with c = −1/4 with FEM results.
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Fig. 14 Comparison of buckling stress interaction 
formulae and FEM results.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

FEM

'cr

cr

σ
σ

'cr

cr

τ
τ

Eq. (64)

Eq. (63)
τ 'cr
τcr

σ 'cr
σcr0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1

D
iff

er
en

ce
 [%

]

ζ

C4

C5

C6

C7

C1

C2

C3

C8

C9
0 0.2 0.4 0.6 0.8 1

ζ

0

2

4

6

8

10

12

14

D
iff

er
en

ce
 [%

]

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1

D
iff

er
en

ce
 [%

]

ζ

C4

C5

C6

C7

C1

C2

C3

C8

C9



http://www.tytlabs.com/review/

25

© Toyota Central R&D Labs., Inc. 2016

R&D Review of Toyota CRDL, Vol.47 No.3 (2016) 11-26

relation to a patient joint research over the years in 
spite of slow progress.
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6. Conclusion

This report began by discussing simplified methods 
for determining the shear buckling stress under 
torsion for box beams. An equation for approximating 
the shear buckling stress was proposed, and was 
verified for accuracy against the results of a buckling 
eigenvalue analysis using FEM. Next, buckling 
stress interaction formulae were introduced for 
a combination of an axial compressive force and 
a torsional torque on a thin-walled box beam. First, 
a buckling stress interaction formulae was derived 
based on the energy method for a single plate. Based 
on this result, an interaction formula for compressive 
and torsional buckling stress was proposed, and its 
accuracy was verified by comparing to the results 
of an FEM buckling eigenvalue analysis. The 
conclusions were as follows:
(1) Based on a buckling eigen equation derived using 
the energy method, the conventional shear buckling 
stress equation and buckling stress coefficient were 
rewritten to enable simultaneous and symmetrical 
treatment of widths for both horizontal and vertical 
plates in order to propose an approximation equation 
for determining the shear stress under torsional 
buckling in a box beam. Based on a comparison 
with the FEM results, the proposed approximation 
equation was found to exhibit an error of less than 
about 5% for sectional aspect ratios of 0.4-1.0, which 
is an acceptable level of accuracy.
(2) Assuming that the buckling mode was sinusoidal, 
approximating the buckling eigen equation obtained 
with the energy method using low-order terms 
allowed us to derive a buckling stress interaction 
formula for plates under combined loads. There 
were demonstrated similarities between the formulae 
obtained, and they could be related through a single 
parameter. The proposed formulae for compressive 
and torsional buckling stress in box beams were found 
to differ depending upon the load ratio and sectional 
aspect ratio.
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