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To develop safe and comfortable automobiles, their design must reflect human 
characteristics. Human characteristics modeling is an important technology for developing a high-quality 
vehicle that reflects human characteristics effectively and efficiently. Development of these models can be 
categorized into two basic approaches: physical models and statistical models. Each approach has advantages 
and disadvantages. In this paper, four studies of different automobile human characteristics models are 
reviewed and discussed: (1) A sound quality evaluation method was developed using a psychophysical 
model. (2) Information equipment operation behaviors were analyzed using a cognitive model, and indices 
were developed for application to human-machine interface design. (3) A drowsiness detection method 
was proposed using a brain function model and the results of functional magnetic resonance imaging 
experiments. (4) Individual driver behavior was modeled using both physical and statistical models, and 
the results for each model were compared and discussed.

1. Introduction

Humans need to drive automobiles without 
accidents, most of which are caused by human error. 
Also, people want to be comfortable in automobiles, 
which means that the qualities of the automobile must 
be pleasing to human senses. Therefore, to develop 
safe and comfortable automobiles, automobile design 
must reflect human characteristics.

Many studies have evaluated human characteristics 
for automobiles. In the 1990s, as basic automobile 
performance had matured and a booming economy 
continued, consumers demanded automotive products 
with higher quality. For instance, the designs of body 
color, engine sound, seat textile, interior odor, and 
vehicle motion became more important. Consequently, 
human senses (for sight,(1) hearing,(2) tactile sensation,(3) 
smell,(4) and motion(5)) were extensively studied. 
In the 2000s, the focus shifted to information and 
communication technologies, and cell phones and car 
navigation systems became popular. Some accidents 
occurred when drivers used this equipment while 
operating their vehicles. To mitigate negative impacts 
of this equipment, the human-machine interface(6) and 
mental workload of drivers(7) were widely studied. In 

the 2010s, with the aging of society and the progress 
of artificial intelligence technology, active safety 
systems and automated driving systems are being 
developed. Accordingly, the driving behavior (8) and 
the cooperation between man and machine(9) are 
intensively studied.

Thus, it has become necessary to clarify various 
human characteristics to address the changing needs 
of these times.

2. Human Characteristics Models

2. 1  Reflecting Human Characteristics in 
Automobile Design

To reflect human characteristics, designers have 
typically employed the following prototyping method:

(i) Design the first specification.
(ii) Create a prototype.
(iii) Evaluate the prototype using human evaluators.
(iv) Change the specification according to the 

evaluation result.
(v) Repeat steps 2, 3, and 4.
However, this process is not efficient for the 

following reasons: 
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-  Reproducibility of Evaluation: Humans sometimes 
sense the same stimuli differently and behave 
differently in the same situation. For example, 
human evaluators’ results for the same engine 
sound often vary. They are affected by the order 
in which evaluations are performed, evaluator’s 
physical condition, and the duration of the testing. 
To compensate for these artifacts, the evaluation 
should be repeated many times, which wastes time 
and effort.

-  Inter-evaluator Agreement: Human characteristics 
differ depending on the person. For example, it 
is not unusual for two human evaluators to have 
different results. However, it is difficult to know 
which result is a better representation of the parent 
population. To resolve this problem, a number 
of human evaluators should participate in the 
evaluation, which again is inefficient.

-  Prototyping: To execute the process, construction 
of a prototype is essential. However, prototyping 
consumes time and effort. Especially, the building 
of hardware prototypes, such as engines, steering 
wheels, and vehicle bodies, requires much time and 
money.

In an attempt to resolve the above problems, 
mathematical models of human characteristics can 
be developed. This model-based method offers the 
following advantages:

-  The evaluation can be done rapidly, and human 
evaluators are minimized or eliminated.

-  The evaluation result has a high degree of 
reproducibility.

-  As the relationship between the specification and 
the evaluation result is clear, the designer can 
change the specification without prototyping.

Today, the development period for vehicles is 
becoming shorter because of rapidly changing 
market needs and strong competition between car 
manufacturers. As a result, human characteristics 
modeling has become an important technology for 
developing high-quality vehicles that reflect human 
characteristics.

2. 2  Human Characteristics Models for Vehicles

Human characteristics models can be classified 
into two approaches to model development: physical 
modeling and statistical modeling. In the first 
approach, a physical model is used to describe the 

human characteristics. The physical models commonly 
used are psychophysical models, cognitive models, 
transfer function of control theory, biological models, 
and brain functional models. In the second approach, 
human characteristics are described using statistical 
models. The models often use basic statistics, factor 
analysis, discrimination analysis, regression analysis, 
support vector machines, and convolutional neural 
networks. These two approaches are further elaborated 
below.

The advantages of the physical modeling approach 
are as follows. If a physical model explains the targeted 
characteristics well and the model is well-established, 
the design process is very efficient. Such physical 
models have been established for many situations and 
people, eliminating the need to design a new model 
or collect new experimental data. Furthermore, since 
the physical meaning of the model is explicit, the 
capabilities and limits of the model are clear and easy 
to apply to the design. On the other hand, it is generally 
difficult to increase the accuracy of a physical model 
and expand its range of applicability. For example, the 
modeling of driving behaviors can be used to describe 
driving behavior linearly, although actual human 
behavior is usually nonlinear.

In contrast, the advantage of the statistical 
modeling approach is that physical knowledge about 
human characteristics is not necessary if sufficient 
measurements are available. One difficulty is that it 
requires many measurements. Although recently it 
has become relatively easy to obtain large quantities 
of data, collecting the desired data precisely requires 
much effort. Another difficulty is model selection. 
Normally, the true model structure cannot be known. 
If the selected statistical model is more complex than 
the true model, the generalization ability to effectively 
work on unknown data as well as data used at the 
time of experiment is sometimes degraded.(10) To 
compensate for this weakness, cross-validation tests 
and various criteria for model selection have been 
proposed.

To model individual driver characteristics, the 
modeling approach needs to be tailored based on 
the properties of the targeted human characteristics 
and relevant automobile component or system being 
designed. In this paper, four studies using automobile 
human characteristics models are reviewed and 
discussed to illustrate various aspects of model 
selection and application.
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3. Sound Quality Evaluation: Psychophysical 
Model(2)

3. 1  Background

Demand for comfort in the vehicle passenger 
compartment has recently increased as the quality 
of passenger cars continues to improve. To make the 
compartment comfortable, not just the noise level but 
the noise type must be considered. One such example 
is rumble noise, which is an intermittent turbid engine 
noise. This rumble noise is unpleasant to passengers 
even if the noise level itself is low.

Previous studies have shown that rumble noise has 
the following characteristics:(11,12) 

-  Rumble noise is generated at an engine speed of 
around 3000 rpm during acceleration. 

-  The generating frequency band is approximately 
from 100 to 600 Hz. 

-  Sound pressure amplitude significantly fluctuates 
with a period of two engine revolutions (Fig. 1).

However, the conventional evaluation methods 
used in these studies failed to correlate rumble with 
the capabilities of human hearing. Specifically, the 
amplitude modulation obtained from the signal of 
100 Hz to 600 Hz does not match human auditory 
perception. In this section, an evaluation method using 
a psychophysical model is reviewed.

3. 2  Modeling of Rumble Evaluation

The human hearing organ is composed of a number 
of band-pass filters connected in parallel. A person 
cannot distinguish multiple sounds with different 

frequencies within the pass bandwidth of the filter, 
and the sounds are heard as just one composite sound. 
This characteristic is called critical band,(13) and it is 
a common concept in hearing psychophysics. Thus, 
a person hears multiple components of n/2 order  
(n = 1, 2, ...) of engine revolutions in a critical band as 
one amplitude-modulated sound with a period of two 
engine revolutions (Fig. 2).

The above considerations were used in modeling 
the rumble evaluation by humans, as shown in 
Fig. 3. In the model, sound reaching the ears of  
a person is divided into many bands corresponding to 
critical bands, followed by detection of the amplitude 
modulation of sound in each band. The amplitude 
modulation is then evaluated and a partial rumble 
evaluation is determined for each band. Lastly, the 
partial rumble evaluations for each band are integrated 
into one rumble evaluation for the entire sound. 

3. 3  Analysis of Rumble Noise 

On the basis of the model of rumble evaluation, 
many kinds of rumble noises in the vehicle passenger 
compartment were analyzed to find out how amplitude 
modulation was perceived as rumble. Figure 4 shows 
an example of rumble noise where the amplitude 
modulation with a period of two engine revolutions 
is excessive. This figure represents (a) the frequency 
components of noise in the vehicle passenger 
compartment, (b) the waveform of the noise restricted 
to a critical band and its envelope, and (c) the frequency 
components of the envelope. This type of noise gives 
a strong sense of rumble to human ears, and the model 
confirmed that a person perceives the amplitude 

Fig. 1    Waveform of noise in vehicle passenger compartment.
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3. 4  Quantification of a Sense of Rumble by 
Synthesized Noise

In the next stage, sensory evaluation tests were 
conducted to quantify the relationship between the 
feature of amplitude modulation and the sense of 
rumble. First, the relationship between the amplitude 
of the principal rumble component and the sense 
of rumble was studied. Synthesized sounds were 
generated by varying the number of harmonics n 
constituting the synthesized noise and the amplitude  
Ai of each harmonic in Eq. (1). 
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modulation with a period of two engine revolutions 
as rumble. The period of two engine revolutions is 
hereafter called the principal rumble period, and the 
frequency component of the envelope containing the 
principal rumble period is called the principal rumble 
component.

The model identified various types of amplitude 
modulation. In some rumble noises, the degree of 
modulation is low and the rumble is perceived to be 
weak. In other rumble noises, the modulation period 
of one engine revolution is dominant and the rumble 
is also perceived to be weak. Based on these results, it 
was found that the evaluation of rumble is influenced 
not only by the principal rumble component but also 
by various features of amplitude modulation.

Fig. 2    Mechanism of generating rumble.
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Next, the influence of modulation degree was 
investigated. Subjects evaluated sounds with various 
degrees of modulation. As a result, it was found 
that even if the amplitudes of the principal rumble 
components are the same, the sense of rumble became 
weak as the degree of modulation decreased. The 
results are shown in Fig. 6. The rumble correction 
coefficient represents the extent to which the sense of 
rumble was reduced with respect to that of the sound 
according to the degree of modulation. 

where f0 = 250 Hz (center frequency) and fa = 25 Hz 
(modulation frequency). Each harmonic corresponds 
to the noise component of n/2 order of engine 
revolutions at 3000 rpm. Then, 12 subjects evaluated 
the sense of rumble in the test sounds. The test results 
(Fig. 5) showed that the sense of rumble has a strong 
correlation with the amplitude of the principal rumble 
component. In other words, the sense of rumble could 
be quantified using the amplitude of the principal 
rumble components.

Fig. 4 An example of large amplitude modulation having 
a period of two engine revolutions.
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Fig. 6 Relationship between the degree of modulation 
and the rumble correction coefficient. ‘Rumble 
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which the sense of rumble was reduced with 
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4. Information Equipment Operation: Cognitive 
Model(14)

4. 1  Background

In recent years, there has been an enormous growth 
in the popularity of in-vehicle information systems, 
including vehicle navigation systems. This trend will 
most likely continue as intelligent transport systems 
and information technologies advance further. Because 
drivers use these systems while controlling a vehicle, 
the systems must be safe to use as well as convenient. 
Implementing in-vehicle human-machine interfaces 
that are both safe and convenient requires clarification 
of the following two items: 

-  Indices for objectively evaluating in-vehicle 
information system usability and safety.

-  Relationships between evaluation indices and 
human-machine interface design specifications.

4. 2  Evaluation Indices

Usability

Various measures have been proposed as possible 
indices for evaluating usability. These include the 
operation time, the number of operations, task 

By conducting similar experiments, rumble correction 
coefficients for the amplitude of the envelope of the 
first-order component of engine revolution and the 
principal rumble period were obtained.

3. 5  Objective Evaluation Model of Rumble

An objective evaluation model was proposed on the 
basis of the above relationships (Fig. 7). The model 
divides sound into critical bands, detects the amplitude 
modulation in each band, and measures the amplitude 
of the principal rumble component. Next, rumble 
correction coefficients are obtained based on the 
degree of modulation, the amplitude of the envelope 
of the first-order component of engine revolution, and 
the principal rumble period. Then, the value obtained 
by multiplying the rumble correction coefficients and 
the amplitude of the principal rumble component is set 
as a partial rumble evaluation for each band. Finally, 
the maximum value of the partial evaluation values is 
taken as the objective evaluation of the whole sound.

Figure 8 shows the relationship between the  
objective and subjective evaluations of actual 
vehicle sounds. Using the physical model of human 
hearing (critical band), an objective evaluation model 
that produced good matching with the subjective 
evaluations was obtained.

Fig. 7    Objective evaluation model of rumble.
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indices for visual interfaces was developed using  
a cognitive model is reviewed.

4. 3. 1  Experiment

To examine driver behavior during system operation, 
hand movement, eye movement, and the system screen 
were video-recorded while test subjects were parking 
and driving. Experimental conditions were as follows:

-  Equipment: Car navigation system, touch-pad type
-  Task: Entry of four, six, or eight different destinations 

requiring two to six operations each; the operation 
sequence was explained by experimenter prior to 
the experiment.

-  Driving Status: Driving 50 km/h on a straight track 
and parking. To control the driving task, subjects 
were instructed to keep to the center of the lane and 
monitor the on-off status of three LEDs mounted at 
the front of the car.

-  Test Subjects: Six males (three in their 30s and 
three in their 50s)

-  Number of Trials: Four trials each of 4, 6, and 8 
destinations (total of 12 trials for each subject)

4. 3. 2  Operation Analysis

Examples of the operation behavior are shown 
in Fig. 9. To analyze and model the operations, the 
cognitive keystroke-level model (KLM)(23) was used. 
In this model, human operations are expressed as  
a series of operators to accomplish a goal. The types 
of operators are keystroke, pointing, hand moving, 
mental preparation, and system response.

Based on the model, it was assumed that operation 
of the navigation system while parking included three 
phases:

-  Phase M (mental preparation): Look at navigation 
system display, read and search menu items, and 
decide operation.

-  Phase H (hand homing): Move hand to menu 
location and touch menu option. 

-  Phase W (waiting for next operation): Wait and 
prepare for the next operation. 

Phases M’, H’, and W’ represent the same activities 
while driving.

Visual behaviors were different between parking 
and driving conditions. A driver could look at the 
navigation display continuously while parking, but 
he had to look at either the road or the display while 

achievement ratio, and the “beginner-to-designer” 
manipulation time ratio.(15) The total task time was 
selected for evaluation of in-vehicle information 
systems, because it is important to accomplish tasks as 
quickly as possible for drivers driving a vehicle.

Safety

For visual interfaces, the total glance time has been 
proposed as a safety evaluation index.(16-18) This index 
cannot, however, be applied to auditory interfaces, 
in that they do not involve any visual recognition 
aspect. In addition, the subjective evaluation proposed 
in the NASA task load index (NASA-TLX)(19) and 
other indices have problems with the reproducibility 
and reliability of the evaluation. Meanwhile, it has 
been reported that most traffic accidents attributable 
to the use of in-vehicle information systems (mobile 
phones: 80%,(20) vehicle navigation systems: 60%(21)) 
were rear-end collisions. Most rear-end collisions are 
caused by delayed brake reaction to a situation change 
in front of the vehicle. For this reason, the ratio of the 
delayed reaction was selected as the safety evaluation 
index. Using a method proposed previously,(22) this 
safety evaluation index could be measured objectively.

4. 3  Visual Interface

Visual and auditory interfaces are mainly used as the 
human-machine interface for information equipment. 
In this section, a method in which the evaluation 

Fig. 8 Relationship between the objective evaluation and 
the subjective evaluation of actual vehicle sounds  
in the vehicle passenger compartment. The line 
represents a regression line.
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 Tt corresponds to the line-of-sight eye movement 
time (i.e., the time the eye takes to shift focus from 
one location to another) and is around 0.23 s.

-  The sum of fixation time in phase M’ + H’ while 
driving, ti, is equal to the sum of operation time in 
phase M + H while parking, ts.

  (4)

-  The sum of glance time in phase M’ + H’ while 
driving, tg, is linearly proportional to the number of 
glances per operation while driving, ng.

  (5)

 where C and D are constants. tg can also be 
described by the following equation.

  (6)

-  From Eqs. (5) and (6), the number of glances per 

ti = ts

tg = C ∙ ng + D ,

tg = ng Tt + ti

driving. The driver looked at the display to read the 
menu in phase M’ and to position his hand in phase H’. 
In phase M’, the glance was sometimes divided into 
multiple glances. In phase W’, the driver did not look 
at the display but looked continuously at the road.

By analyzing these visual behaviors, the following 
properties were found:

-  Operation time ts, representing the duration of 
phases M and H, was linearly correlated to the 
number of menu options m.

   (2)

where A and B are constants. 
-  Glance time eg, representing the total time when 

the driver is not looking at the road, is the sum of 
fixation time ei, representing the duration that eyes 
look at the display, and the constant Tt.

  (3)

ts = A ∙ m + B ,

eg = ei + Tt 

Fig. 9    Example of operation behavior.
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as follows:

  (8)

Finally, the total glance time TG can be calculated as 
follows: 

                                                        ,   (9)

where no is the number of operations; m is the number 
of menu options; tr is the system response time; A, B, 
C, D, and Tt are constants.

(                                          

(                             )  )

(                      )(         )
= no 

   +  + notr .  – 1  ef  

C – Ti

C – Ti

C ∙ A ∙ m + C ∙ B – D ∙ Tt

A ∙ m + B – C

T = no tg +  ng – 1  ef  + notr

= no ∙ C – Tt

C ∙ A ∙ m + C ∙ B – D ∙ Tt

TG = no ∙ tg 

operation while driving, ng, was calculated as 
follows:

                                         ,  (7)

where C and D are constants.
-  The total time during which the driver is looking at 

the road between the divided glance, ef, is about 0.7 s.
-  The waiting time in phase W was almost same as 

the system response time tr.

4. 3. 3  Calculating the Evaluation Index for Visual 
Interfaces 

Prediction of Total Task Time 

Based on the properties described above, a model 
of navigation system operation while driving was 
constructed (Fig. 10). Using the model, the total task 
time T, which is an index of usability, can be calculated 

ng = 
C – Tt

A ∙ m + B – D

Fig. 10    Visual operation model while driving.
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4. 4  Example Application of Usability Evaluation 

Similar analyses and modeling were also carried out 
for auditory interfaces.

Auditory and visual interfaces were compared using 
an information search task. Figure 12 shows the 
results of the comparison. In this chart, the horizontal 
axis represents the safety index, that is, the ratio of 
delayed reaction, while the vertical axis corresponds 
to the usability index, that is, the total task time. The 
results of the comparison quantitatively prove that the 
auditory interface is safer than the visual interface and 
that the use of a word enumeration or fixed-phrase 
protocol can realize auditory interfaces that are more 
convenient than visual interfaces.

As described above, by using the keystroke-level 
model, it was possible to create a model that can 
evaluate usability and safety and clearly relates to 
design specifications.

5. Drowsiness Detection: Brain Function Model(24,25) 

5. 1  Background

Drowsy driving is one of the main causes of traffic 
accidents, and delayed reactions caused by drowsiness 
can result in severe car crashes. Onboard drowsy-driver 
detection systems with sensors to measure drowsiness 
would be effective for preventing such accidents. The 
key technology for such systems depends on finding  
a drowsiness index that can estimate the driver reaction 
delay precisely and that also can be measured onboard. 

Figure 11 shows the relationship between the 
predicted TG and the TG measured during actual 
navigation system operation. As shown in this figure, 
the metrics for usability calculated by this operating 
model were approximately the same as the measured 
data. The correlation coefficient was 0.96, and the 
average root mean square error was 0.7 s.

Prediction of the Ratio of Delayed Reaction 

The ratio of delayed reaction is a calculated safety 
index. In this study, the delayed reaction was defined 
as a reaction whose reaction time was three standard 
deviations (3σ) or longer than the average reaction 
time µ while a driver continuously looks at the road.  
σ represents the standard deviation of reaction time. 

While driving, assuming that a driver looks at the 
display during time period T1 and looks at the road 
during time period T2, the average ratio of delayed 
reaction is calculated as follows:

                 ,  (10)

where Rf is the ratio of delayed reaction when  
a driver continuously looks at the road. Then, the ratio 
of delayed reaction R for a visual interface can be 
calculated as follows: 

                         . (11)

T1 + T2

T1 + RfT2

R = 
T

TG + Rf (T – TG)

Fig. 11 Prediction of the total glance time. The line 
represents a regression line.

Fig. 12 Comparison of auditory interface and  
visual interface.
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known to reside in the brainstem.(28) Therefore, brain 
activity in the brainstem in trials with short and long 
reaction times was compared (Fig. 14). In the figure’s 
upper panel, black squares show positions where 
brain activation in go-without-warning trials with  
a short reaction time was significantly greater than 
that at long reaction times (paired t-test p < 0.05). This 
upper region where the black squares are clustered 

Although many studies were carried out to find such 
an index,(26, 27) no precise index was known at the time 
of the study. Conventional research had focused on the 
correlation of data obtained by experiment but had not 
considered the mechanism of drowsiness. As a result, 
sufficient accuracy could not be obtained. 

The study reviewed here was carried out in two steps. 
First, delayed reactions caused by drowsiness were 
analyzed using functional magnetic resonance imaging 
(fMRI) and the neurophysiological mechanism 
was explored.(24) Second, based on the mechanism,  
a drowsiness index was proposed.(25)

5. 2  Analysis of Delayed Reaction Caused 
by Drowsiness

As the first step, fMRI was used to investigate 
neural mechanisms of the reaction delay in a drowsy 
state. Twenty healthy subjects performed an auditory 
reaction task (Fig. 13) continuously for about 75 min 
during fMRI measurements. During the task, the 
shortest reaction time of any subject was about 300 ms. 
Of the 20 participants, 19 were unable to respond to 
the auditory stimulus during several trials, although 
the inter-stimulus interval was sufficiently long to 
respond. In other words, in these trials, the reaction 
time was infinite. This large variation of reaction times 
in one experiment suggests that the arousal level of 
subjects differed greatly between the awake and asleep 
stages.

The control center for awake and asleep stages is 

Fig. 13 Time course of auditory and visual stimulus 
presenting for fMRI measurements. There are four 
kinds of auditory stimuli: GO without warning, 
NOGO without warning, GO with warning, and 
NOGO with warning.

Fig. 14 The brain imaging result and the peristimulus time 
course of the brain activity.

(a)  The squares indicate the brain activation in the 
brainstem of the Go without warning trials. The 
black squares indicate the position on which  the 
activation of the trial with the short reaction time 
was statistically significantly higher (paired t-test 
p < 0.05)  than that with the long reaction time. 

(b)  The eristimulus time course of the brain activity in 
the brainstem at the MNI coordinates (2, −26, −26). 
Black and gray line indicate the time course of the 
short reaction time trials (Short RT) and that of the 
long reaction time trials (Long RT) respectively.     

350 ms350 ms 350 ms 350 ms

2−6 s 10−12 s 10−12 s

* : paired t-test p < 0.05
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target and depress a pedal in reaction to an auditory 
stimulus. Their eye movements were measured using 
electrooculography. 

Figure 16 shows examples of horizontal eye 
movements during the 5 s before stimulus presentation. 
Each column shows results from a different subject. 
The upper row is the results for observation of stable 
fixations. The lower row is the results for stimulus 
response, in which slow and sinusoidal-like oscillatory 
slow eye movements (SEM) appeared before the 
stimulus onset. 

Figure 17 shows the times for reaction to auditory 
stimulus in the absence and presence of SEM. The 
reaction times are clearly different depending on the 
occurrence of SEM (p < 0.001, one-tailed paired t-test).

Based on the above results, a method to predict 
reaction delay by SEM occurrence was developed. 
The detection performance was compared with 
various conventional detection methods, as shown in 
Fig. 18. The SEM method had the highest detection 
rate and the lowest false detection rate. Thus, by using 
the neural functional model, a more accurate index for 
drowsiness was found.

6. Individual Driver Behavior: Statistical Model(31)

6. 1  Background

With increased emphasis being placed on the 
practicality and safety of vehicles, the recognition 
of driver-specific behavior has become much more 
important. The ability to recognize a driver and his 
or her driving behavior could form the basis of many 
applications, such as the ability to detect the driver 
becoming inattentive, the customization of vehicle 
functions to suit a driver’s personal preferences, 
driver authentication for security purposes, and  
human-machine cooperative driving. A key technology 
for realizing these advances is human behavior 
signal processing, which involves the processing 
and recognition of human behavior signals, such as 
operation of the accelerator pedal. In this section, 
driver identification models based on such behavior 
signals is reviewed.

Driving behaviors are components of a cyclic 
process, as described below and illustrated in Fig. 19.
(i) The driver recognizes the road environment, 

including, for example, the road layout and the 
headway distance from the vehicle-in-front.

is called the brainstem reticular formation and is 
known to be related to attention.(29) The lower panel 
shows respective peristimulus time courses of brain 
activity for the black squares in the upper panel. 
The results suggest that the delayed reaction caused 
by drowsiness is related to activity in the brainstem 
reticular formation.

5. 3  Drowsiness Index

Because the activity of the brainstem reticular 
formation is difficult to observe directly, it is 
inappropriate as a drowsiness index. Therefore, a way 
to observe this activity indirectly, from the outside 
was examined. In the brainstem reticular formation, 
activity of the omnipause neurons is affected by arousal 
signals, and these neurons in turn affect saccade eye 
movements (Fig. 15).(30) Therefore, an experiment to 
measure eye movements was carried out. Fourteen 
subjects sat on a dismounted car seat in front of an 
LCD monitor and were instructed to fixate on a visual 

Fig. 15 Neural model of the saccade generator in the 
reticular formation. Omni pause neurons (OPN) 
is affected by arousal signal (A) and inhibit motor 
neurons (MN) through excitatory burst neurons 
(EBN). TN, IBN, LLBN represent tonic neurons, 
inhibitory burst neurons, and long-lead burst 
neurons, respectively.
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Fig. 17 Reaction times to the auditory stimulus 
in the absence and presence of slow eye 
movement (SEM). The black line indicates 
the mean reaction time for all subjects and 
the thin grey lines indicate mean reaction 
times for individual subjects. The error bars 
represent the standard error of the mean.
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Fig. 16 Examples of horizontal eye movement for 5 sec before the stimulus presentation. Each column shows results from  
a different participant. The upper row is the results that stable fixations were observed. The lower row is the results that 
slow and sinusoidal-like oscillatory eye movements (SEM: Slow Eye Movement) appeared before the stimulus onset. 
The eye movements were measured using EOG (Electro-oculogram).
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Fig. 18 Comparison of drowsy indexes. The bars represent 
the detection rate of reaction delays and the points 
represent the false detection rate of reaction delays.
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6. 2  Model Comparison

Two different strategies were compared for driver 
identification based on driving behavior signals. In 
the first approach, a physical driving model was 
used for characterizing the driving in a parametric 
manner; i.e., the parameters of the dynamic system 
were used to characterize the driver. For the physical 
model of car following, the Helly model(32) and optimal 
velocity model(33) were used, since these two models are 
frequently used in a wide range of applications.(34,35)

In contrast, in the second method, the driver’s 
characteristics were represented by the distributions 
of the signals based on a Gaussian mixture model 
(GMM). In the GMM approach, by estimating the joint 
distributions of the signals and their time derivatives, 
both static and dynamic properties of the signals can 
be modeled implicitly.

6. 2. 1  Parametric Approach: Helly Model

The most familiar model for car following is the 
stimulus-response model. A difference in the velocity 
of the vehicle-in-front, as well as a change in the 
headway distance from that vehicle, stimulates 
the driver, who responds by either accelerating or 
decelerating. The Helly model is shown in Eq. (12). 

  (12)

where C1 and C2 are the response sensitivity to the 
stimulus, D is the optimum headway distance from 
the vehicle-in-front, and T is the response delay. 
These values may be constants or the functions of other 
variables. While many models had been proposed to 
represent C1, C2, D, and T, the Helly model shown in 
Eq. (13) was used.

  (13)

where T, β1, β2, β3, and β4 are constants. As this is  
a linear model, the parameter estimation is stable and 
the physical meanings of these parameters can be 
interpreted easily.

The experiment was performed using a driving 
simulator. Eight subjects drove two different roads four 
times each (for total of eight sessions per participant). 
For the parameter T, a value of 500 ms was used, which 
was derived from another simple stimulus-response 

v(t + T ) = C1h(t) + C2{h(t) – D},∙ ∙

v(t + T ) = β1h(t) + β2h(t) + β3v(t) + β4 ,∙ ∙

(ii) The driver determines the action that he or she 
should take, such as accelerating, braking, and/or 
steering.

(iii) The driver operates the accelerator pedal, brake 
pedal, and/or steering wheel.

(iv) The vehicle status (e.g., velocity and yaw rate) 
changes according to the driver’s operation of 
vehicle controls.

(v) The road environment (e.g., headway distance 
from the vehicle-in-front) changes according to 
the vehicle status.

The most elementary and familiar driving behavior 
is car following, which involves maintaining a constant 
headway distance from the vehicle-in-front and 
adjusting the relative velocity accordingly (Fig. 20). In 
this figure, v(t) is the velocity of the driver’s vehicle and 
h(t) is the headway distance from the vehicle-in-front. 
The velocity of the vehicle-in-front is v(t) + h(t),  
where h(t) is the temporal differential of h(t).

In the study reviewed here, the driver was identified 
using the driving behavior signals that were observed 
while the driver was performing a car following task.

∙
∙

Fig. 19 Basic dynamics of driving behavior, vehicle 
status, and road environment (A: the force on the 
acceleration pedal, B: the force on the brake pedal, 
V: the velocity,  H: the headway distance from the 
vehicle in front).

Fig. 20 Car following model. (v(t): the velocity, h(t): the 
headway distance from the vehicle in front, h(t): 
time differentiation of h).
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described in Sec. 6. 2. 1, and the identification rate was 
found to be 54.7%.

6. 2. 3  GMM Approach

Model

GMM is a  statistical model that is a linear 
combination of Gaussian basis functions, and it 
has many applications.(36) The output probability of 
GMM λ to the observation vector o is as follows: 

  (17)

  (18)

where o is an observation vector, λ is a GMM, b(o|λ) 
is an output probability, M is the number of mixture 
functions, µm is the centroid vector of the mth mixture 
function, Σm is the covariance matrix of the mth 
mixture function, and ωm is the mixture weight for 
the mth mixture function and satisfies the following 
equation:

              .  (19)

Nm(o) is the mth mixture function and is defined by 
the following equation:

  (20)

where Σm and Σ –1
m are the covariance matrix and 

the inverse of the covariance matrix, respectively; 
(o − µm)′ is the transpose of (o − µm); and D is the 
dimensionality of o. In this work, a diagonal matrix 
was used for Σm. The likelihood of the model λ to the 
observation vectors O = (o1, o2,...) is defined by 

  (21)

The experimental data were the same as those 
described in Sec. 6. 2. 1. The identification method was 

b (o|λ) =    ωmNm (o) ,  
m=1

M

∑

λ = {ωm, µm, Ʃm|m = 1, 2, ..., M},

m

M

m
=
∑ =

1

1ω

1
(2π)D | Ʃm |√
————–Nm (o) = (o – µm)′ Σ –1

m (o – µm)   , ∙ exp { }– 2
1

P (o|λ) = b (ot) =  ωmNm (ot) .  
t=1

T

Π
t=1

T

Π
m=1

M

∑

experiment.
The driver identification method was as follows.

(i) Parameter vector x = (β1, β2, β3, β4)′ is 
calculated for the data obtained from 
each session, using the least-square-error 
method.

(ii) For each driver c, the data obtained from the eight 
sessions was divided into six blocks of learning 
data and two blocks of estimation data.

(iii) For each driver c, the average parameter vector 
µc and the covariance matrix Ʃc are calculated 
using the parameter vectors x of the six blocks of 
learning data.

(iv) For each block of estimation data, the Mahalanobis 
distance Dc between the estimation data and 
the average for each driver was calculated. The 
estimation data is identified as the driver having 
the least Mahalanobis distance.

  (14)

A cross-validation test with the process above gave 
an identification rate of 43.8%.

6. 2. 2  Parametric Approach: Optimal Velocity 
Model

Another model that could be applied to the car 
following task was the optimal velocity model. 
This model assumes that each driver has a preferred 
optimal velocity for a given headway distance from the  
vehicle-in-front. Thus, drivers can be identified by 
their pattern of acceleration and deceleration according 
to the difference between the current and optimal 
velocity.

  (15)

  (16)

where Vopt(h) is the optimal velocity function, α is the 
sensitivity parameter, Vmax is the maximum velocity, 
and a and h0 are parameters that represent the driver’s 
optimal velocity property. For the parameters T and 
Vmax, 500 ms and 32 m/s, respectively, were used; 
these were derived from another simple experiment. 
An example of an optimal velocity model is shown in 
Fig. 21(a).

The identification method was the same as that 

Dc = (x + µc)′ Ʃ –1
c  (x + µc)

v(t + T ) = α{Vopt(h(t)) – v(t)},∙

Vopt(h) = Vmax[1 – exp{– α(h – h0)}] ,
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                                     .  (22)

Here, x(t) is the original feature and K is the time 
window duration (2K = 600 ms). The mixture 
number is 2, 4, 8, or 16.

(iii) For each block of estimation data, the likelihood  
P(O|λc) for each driver c was calculated. The 
estimation data are associated with the driver for 
whom the likelihood is highest.

An example GMM is shown in Fig. 21(b).  
A cross-validation test was done using the above 
process.

Results

The identification results are shown in Fig. 22, 
where V is the velocity, H is the headway distance from 
the vehicle-in-front, and Δ represents the temporal 
change. Modeling the dynamics of the driving signals 
is also important in the GMM approach.(37) The best 
identification rate was 78%, which was obtained using 
V, ΔV, H, and ΔH.

The Helly model described in Sec. 6. 2. 1 used the 
variables v, v, h, and h, and the identification rate was 
43.8%. The identification rate of GMM using similar 
features V, ΔV, H, and ΔH was 78%. The optimal 
velocity model described in Sec. 6. 2. 2 used the 
variables v, v, and h, and the identification rate was 
54.7%. The identification rate of GMM using fewer 
features V and H was 69%. In each case, the GMM 
model was found to be better than the parametric 
physical model. This result suggests that:

-  GMM can be used to represent the underlying 
dynamics between features with the joint 
distribution function.

-  GMM can represent the non-linearity and the 
stochastic aspects with a probabilistic distribution 
function.

6. 3  Feature Comparison for GMM

The features of GMM were compared using actual 
driving behavior data from 30 drivers.(38) The average 
duration of driving data acquisition for each driver was 
around 20 min. The first 10 min was used for training 
and the remaining 10 min for testing.

Figure 23 shows the identification rates using  

Ʃ K
k= –Kkx(t + k )

Ʃ K
k= –Kk 2Δx(t) = 

∙ ∙

∙

as follows:
(i) For each driver c, the eight sets of session data are 

divided into six blocks of learning data and two 
blocks of estimation data.

(ii) For each driver c, GMM λc was estimated. The 
mixture weight ωm, centroid vector µm, and 
covariance matrix Σm are calculated using feature 
vectors o of six blocks of learning data with the 
EM algorithm. The elements of the feature vector 
are some of v, Δv, h, and Δh, where Δx represents 
the temporal change in value x and is calculated 
using the following equation:

Fig. 21    Examples of a physical model and a statistical 
model.

(a) An example of the optimum velocity model. A gray 
line represents a driving behavior signal of a driver. 
The black line represents the optimal velocity 
model calculated from the driving behavior signals 
of the driver.

(b) An example of the GMM model calculated from 
the same signals of (a). The height represents the 
output probability distribution of the GMM model.
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vehicle-in-front (Fig. 19). As a result, personal 
information is obscured by the inclusion of V and H.

To improve the identification rate, the features of the 
accelerator pedal and brake pedal were combined. As 
drivers cannot press both pedals simultaneously, the 
joint distribution of the force on the accelerator pedal 
and the force on the brake pedal has no effect. Thus, 
the sum of the log-likelihood of the force on both the 
accelerator and brake pedals was used. Figure 24 
shows the result. The highest identification rate of 
73% was obtained using AΔA + BΔB.

In this section, both physical and statistical models 
were reviewed, and the statistical models were found to 
out-perform the physical models. Also, interpretation 
of the physical meaning was found to be effective for 
feature and model selection in the statistical models.

a single feature and multiple features. In the figure, A, 
B, V, and Δ indicate the force on the accelerator pedal, 
the force on the brake pedal, the vehicle speed, and the 
dynamics, respectively.

The feature combination AΔA provided the highest 
performance. The fact that accelerator pedal force 
was the best driver identifier could be interpreted as 
follows:

-  As the accelerator pedal is operated directly by the 
driver, it is best at preserving individual behavior.

-  Since the brake pedal is operated less frequently 
than the accelerator pedal, its identification 
performance is low.

-  The vehicle velocity V and the headway distance 
from the vehicle-in-front H are obtained by the 
convolution of the driver’s operation, the physical 
properties of the vehicle, and the properties of the 

Fig. 23 Driver identification rate of GMM for driving signals of actual vehicles (A: the force on the acceleration 
pedal, B: the force on the brake pedal, V: the velocity, Δ: temporal change).
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Fig. 22 Driver identification rate of GMM with various number of mixtures (V: velocity, H: headway distance, 
ΔV: temporal change of V, ΔH: temporal change of H).
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models were good but not precise enough for real 
human behavior. The statistical models, which  
out-performed the physical models, used features 
similar to the temporal features of the physical models. 
This suggested that the statistical model could relax 
the rigid relationship among features described using 
differential equations. These relaxations are suitable for 
stochastic, context-dependent, individually different, 
and nonlinear human characteristics. Interpreting the 
physical meaning was effective for feature selection, 
model selection, and application of the statistical 
model results.

In general, multiple models exist for each human 
characteristic. The application of physical models 
ranges from microscopic cells to macroscopic social 
behaviors. The complexity of statistical models ranges 
from simple linear regressions to large convolutional 
neural networks. Also, model structure and learning 
algorithms have many variations. To use these models, 
it is important to choose a model that is sufficient for 
the design being evaluated and appropriate for the 
amount of data available. Complex models are not 
necessarily better than simple models. In many cases, 
the simplest model that describes the actual data has 
the best performance.(39)

In the near future, research on human characteristics 
is expected to make great progress. One direction 
is generic model research. As shown in this paper, 
although there are many types of human models, 
a common base principle or common fundamental 
equation does not exist. Therefore, the research results 

7. Discussion

In this section, the modeling studies covered by this 
review are summarized.

Regarding sound evaluation (Sec. 3), a hearing model 
commonly used in psychophysics was used to analyze 
human hearing. The model clarified the rumble sound 
features that are consistent with human hearing. This 
research resulted in an objective evaluation model.

In Sec. 4, an evaluation index of the human-machine 
interface in information equipment operation was 
developed by applying the keystroke-level model, 
which is widely used in cognitive science. Using 
this model, the human operation process could be 
structured and the task times could be predicted. The 
study could concentrate on expanding the model to 
other driving matters (e.g., the division of glances).

Regarding drowsiness detection (Sec. 5), despite 
extensive study, precise drowsiness index that can 
estimate the reaction delay and that can be measured 
onboard had been unknown. To develop a useful 
index, it was necessary to clarify the relationships 
among drowsiness, reaction delay, and measurement 
features. fMRI measurements and statistical analysis 
revealed that drowsiness and reaction delay were 
caused by decreased activity in the brainstem. Based 
on the neural model of eye movement triggered by the 
brainstem, SEM was found to be a precise index.

Finally, in Sec. 6, a study to improve driver 
identification based on statistical human behavior 
models was reviewed; conventional physical 

Fig. 24 Driver identification rate of multiple likelihood of actual vehicles (A: the force on the acceleration pedal, 
B: the force on the brake pedal, V: the velocity, Δ: temporal change).
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are sometimes hard to accumulate and share among 
different research domains. Recently, the free energy 
principle was proposed as a unified brain principle(40) 
and applied to various human characteristics.(41) These 
directions are expected to help human characteristics 
research evolve from case studies to systematic 
research.

Another direction is the whole-brain model research, 
which attempts to develop a functional model of 
the entire brain, including cognition, speculation, 
memory, learning, emotion, and consciousness. Some 
research groups are trying to simulate all neurons of 
a brain,(42) while others are trying to develop generic 
artificial intelligence software.(43) These studies are 
expected to provide a systematic perspective for 
human characteristics research.

Through these studies and advances in data science 
and large-scale data accumulation, it is expected that 
human model-based designs for automobiles will 
evolve rapidly.
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